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Abstract—Improved fuel consumption and lower emissions
are two of the key objectives for future transportation. Hybrid
Electric Vehicles (HEVs), in which two or more power systems
are combined, are able to meet these objectives through the
capture and reuse of regenerated braking energy, and through
optimised use of the prime mover. However, more complicated
power management strategies are required for such vehicles.
This paper explores the potential of applying to advanced power
management strategies for a Diesel Multiple Unit (DMU) train.
These types of vehicles have multiple diesel engines which
are commonly operated in a homogenous manner. The work
presented in this paper analyses the potential energy savings
that may be obtained through the independent operation of the
engines. Two widely investigated power management strategies
that have been developed for HEVs have been applied to a typical
DMU railroad vehicle.

Dynamic Programming (DP) strategies have been applied to
the results produced by a Single Train Motion Simulator (STMS)
to identify the optimal instant power distribution between the
engines. An adaptive rule-based online strategy based on the
optimization results from the DP solution is then proposed and
realized using a non-linear programming optimization algorithm.
Both of these two strategies indicate acceptable agreement and
show around 7% fuel cost reduction in comparison with the
evenly-split engine operation.

Index Terms—Energy management strategy, Multiple unit
train, Dynamic programming, Rule-based online strategy, Non-
linear optimisation

I. INTRODUCTION

ITH the increasing concerns for the environment and

fuel cost, railroad transportation is facing pressure
to improve the environmental performance of its vehicles.
To improve fuel economy and reduce total emissions, the
propulsion systems are becoming more complex. As a result,
multiple power sources are commonly present in modern
railroad vehicles, as opposed to locomotive hauled trains. Two
of notable examples of railroad vehicles which employ multi-
ple power sources include prototype Hybrid Electric Vehicles
(HEVs) (currently in the early stages of development), and
more common Multiple Unit Vehicles. This introduction will
briefly review recent research concerning HEVs with various
power management strategies, and will then discuss a typical
British Diesel Multiple Unit (DMU) train and its potential to
employ advanced power management strategies.
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A. Power Management Strategies for Hybrid Electric Vehicles

The idea of hybridization of a propulsion system was
originally conceived from the motivation to extend the working
range of electric automobiles [1]. However, there are numerous
additional benefits of these systems. A hybridized design with
both prime mover (Internal Combustion Engine (ICE) or Fuel
Cell) and on-board energy storage device, are often able to
utilize a significantly down-sized prime-mover. The Energy
Storage Device can enable the prime mover to operate within
its optimum efficiency range and also capture braking energy
[2], [3]. There is a large body of research which has focused
on elevating the efficiency of components, such as power
electronics devices [4], [5] and batteries [6]-[9].

In order to take full advantage of hybridization, effective
power management strategies are necessary. Four key goals of
a hybrid system are summarized below:

maximum fuel economy;
minimum emissions;
minimum system costs;
good driving performance.

The power management strategy needs to consider: the optimal
engine operating region, engine dynamics, minimum engine
speed, battery state of charge, relative power distribution,
etc [10]. These strategies can be primarily divided into two
categories: rule-based and optimization-based [11].

A rule-based strategy consists of sets of if-then rules in
an expert system. These sets of if-then rules can be obtained
from heuristics, human experience or simulation results. Rule-
based strategy attributes its notable advantages to having no
requirement for the future journey profile to be known, and is
also suitable for on-line applications. The main idea behind a
rule-based strategy for HEVs is “Load leveling”. Load leveling
suggests that one operates the ICE in its optimal region. The
difference between the output of the ICE and the demands
of the driver will be met by the energy storage device [12].
Recent work has shown that the Equivalent Consumption
Minimization Strategy (ECMS) can be used to determine an
effective rule-based strategy to achieve a fuel saving [13].
Within the scope of rule-based strategies, fuzzy rule-based
strategies [14]-[16] as a robust control method, is suitable for
highly non-linear, multi-domain, time-varying systems such as
HEV propulsion systems.

Several optimization-based control strategies for power
management of HEVs have already been proposed. These
control strategies could generally be categorized into two
groups: global off-line optimization and on-line optimization
[17], [18].
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TABLE 1
TYPICAL TECHNICAL DATA FOR DMU TYPE VEHICLES

Technical Data

Track gauge 1435mm

Number of cars per unit 2 to 6 cars; basic version 3-car unit
Unit length standard

Max. operational speed 160 km/h

1 Diesel motor (560 kW) in each car
approx. 168.5 tonnes
18.5 tonnes

Power supply
Unladen weight
Maximum axle load

Global optimization methods are rarely suitable for on-line
implementation. However, these solution methods can give
useful information for designing on-line strategies. Dynamic
Programming [19] [20], Non-Linear Convex Programming
[21], Genetic Algorithms [22], [23], and Optimal Control
Theory [24] [25] have all been applied to develop the power
management strategy of HEVs.

B. Typical DMU train

The traditional traction system of a DMU train consists
of several homogeneous power sources. Multiple unit trains
usually operate the individual engines in a synchronized
manner. This means that engines can often operate well
outside their optimum operating region. For example, a set
of engines may all work with a low power output resulting in
an inefficient operation. The central hypothesis of the current
paper is that by decoupling the engines and operating them
individually, the overall efficiency can be improved. This paper
will take a typical DMU train as a case study and demonstrate
the application of advanced power management strategies.
Dynamic Programming (DP) will be used to develop the off-
line global optimization strategy, and the results will then be
used to develop the on-line rule-based strategy.

Fig. 1(a) shows a schematic of the traction system arrange-
ment of a DMU train. A diesel engine with maximum output
power of 560 kW is installed in each car. The sizing of the
engines used in this work has been closely based on realistic
vehicles, for example the BR class 185 [26]. Fig. 1(b) is a
simplified overview of the drive system. Table I presents some
technical data for this type of vehicle.

An “Eco-Mode” programme has actually been initiated in-
service for the class 185 to maximize the energy efficiency.
The Eco-Mode Phase 1 yielded significant savings, and in the
next phase of the work the fuel economy is expected to further
improve. The core concept of Eco-Mode is the selective use of
the 3 engines [27]. The work presented in the current paper is
inspired by the “selective operation” concept and investigates
more deeply from a mathematical and optimization viewpoint.
The technique discussed in the current paper uses global
optimization, theoretically leading to improved fuel economy
and optimal operation of the three engines.

II. METHODOLOGY

To support the study of the traction system optimization, a
Single Train Motion Simulator (STMS) has been developed
to simulate the power requirements of a train undertaking a
typical journey. Since the main purpose of the optimization is
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Fig. 1. A typical 3 coach DMU train

to minimize the fuel consumption of the engines, the engine
characteristic is also an important input into the analysis. This
section will cover both the STMS and engine characteristic in
parts II-A and II-B respectively.

A. Vehicle Modeling and Simulation

1) Equations of motion: The motion of the single railroad
vehicle is generally deterministic regardless of random dis-
turbance from outside environment [28]. The required duty
cycle is dependent on different factors of the train operation.
For instance, the detailed profile of gradients, speed limit, train
mass and passenger loads efc. is necessary information in order
to calculate the motion of the train.

In a typical single train duty cycle between two stations, at
low speed the adhesion limit defined by (1) sets the maximum
available tractive effort (F').

F=puMg (1)

At higher speed the power becomes the main limiting factor.
In Fig. 2, the vehicle keeps a constant tractive effort up to a
particular point referred to as the “base speed” and then has
a constant power region which has the effect of decreasing
the tractive effort reciprocally. Acceleration is maintained up
to the balancing speed where the installed tractive capacity is
equal to the combined resistance and gradient forces.

Energy for the railroad traction system is used for accel-
eration, overcoming electrical and mechanical power losses
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Typical tractive effort and train resistance characteristic
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Fig. 2. Typical railroad vehicle tractive effort and resistance characteristic

and for work in moving the mass of train forward against the
frictional forces.
The basic equation of motion is based on Newton’s Second

Law:
d2

12 =F — R— Mgsin(«a)

2

where:

e M* is the effective vehicle mass (including rotational
inertia);

e M is the vehicle mass;

e g is the acceleration due to gravity;

e R is the vehicle resistance to motion;

o F'is the tractive effort;

« s is the vehicle position.

Consideration of the following issues is important in order to
solve (2).

1) Adhesion The frictional force between the driven steel
wheels and rail is the actual tractive force which moves
the train forward. The value of the adhesion force on
one driven axle can be calculated using (1), where u
is the coefficient of friction. In railroad applications,
this value ranges from 0.05 to 0.5 depending on the
conditions. The upper limit of 0.5 is sometimes assumed
when encountering dry or sanded track. The maximum
tractive effort (T'E,,,q,) per axle is therefore limited by:

TEna: < uMg 3)

In order to maximize the total tractive force, it is usual to
increase the proportion of motored axles. The maximum
acceleration on flat track can be expressed by:

d?s

e “4)

= gpp

where:

e g is the acceleration due to gravity ;
« p is the proportion of motored axles;
o  is the coefficient of friction.
The coefficient of friction is assumed to be independent

of the speed of the train, but in reality there is some
decrease at high vehicle velocities.

2) Resistance The motion of train is opposed by a number
of resistive forces. The overall resistance on level track
can be formulated as follows:

R = (A" + B'v)M + Cv* + D
,

(&)

Where A’, B’, C and D are empirical constants, M is
vehicle mass, v is the velocity and r is the radius of track
curvature. The constant terms in (5) are commonly ob-
tained using empirical methods [29]. (6) is a simplified
version that is used in the current work. In this equation,
the constants include the effect of mass, and the increase
in resistance due to track curvature has been assumed to
be negligible.

D
=AM+ B'Mv+Cv?>+ =
.

R = A+ Bv+ Cv? (6)

Where v is the velocity (m/s) and the coefficients
A(kN), B(kNs/m) and C(kNs?/m?) characterize the
resistance to motion.

Effective Mass The rotational inertia of the rotating
components on the train must be taken into account in
order to properly calculate the acceleration of the train.
This is usually done by adding a rotary allowance term
to the mass of the train. This is expressed as a fraction
of the tare mass of the train.

M* = M(1+ A\y) + M,

3)

)

Where:

e M™ is the effective mass;

e M is the tare mass;

e )\ is the rotary allowance;

e M is the freight or passenger load.
Alternatively, for the sake of simplicity, the effective
mass could be simply expressed by:

M* =M x (14 \y) (®)

The rotary allowance \,, is a constant (usually less than
0.2) and depends on the proportion of motored axles,
the gear ratio and type of vehicle construction.

The general equation of train motion, known as as
Lomonossoff’s equation, can be written as follows:

Ld%s ds ds

e (AJrBdtJert
Here I is the tractive effort and A, B, and C are constants
from the Davis Equation (6).

2) Single train motion simulator: A Single Train Motion
Simulator (STMS) has been developed using Lomonossoff’s
equation. An overview schematic is shown in Fig. 3. In Fig. 3,
four parts of the simulator are shown. From left to the right,
they are:

2

M =F ) — Mgsin(a)  (9)

1) Driving style instructor. This block acts like an train
driver, giving instructions to the train traction system.
For example, there are two driving styles which are
easy to identify: driving the train as fast as possible and
driving the train as energy efficient as possible within
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Driving Style

Fig. 3. System diagram of single train simulator diagram

acceptable journey times. Since this study focuses on the
engine power distribution, the driving style is selected
to be “As fast as Possible”, i.e., “flat out running”.

2) Journey Profile.  The journey profile, including the
signaling system, geographic information, velocity limit
and station position, are all determined for a known
journey. In this study, journey profiles are stored in a
look-up table which is loaded before the simulation. The
STMS calculates the velocity and acceleration of the
train as it moves through the simulated journey by solv-
ing Lomonossoff’s equation using one computational
second time step.

3) Journey Information Recorder. = To demonstrate the
simulation results, the output results are stored in the
Journey Information Recorder. At each time step, the
position of the train, the velocity of the train, and the
energy consumed are recorded.

4) Single Train Motion Simulator.  This block is the
Central Processor Unit for the whole Simulator.

There are 5 operation modes for the traction system that are
available to the train.

1) Constant Tractive Effort Mode. The train is accelerated
under a constant tractive effort. This mode is invoked at
the beginning of the journey.

2) Reduced Power Mode. The train is accelerated under a
reduced power condition. This mode is active when the
train is approaching the velocity limit or braking limit
curve to reduce the acceleration.

Simulator

Position
Velocity Limit |

Journey Profile

Current Velocity

Single
Train
Motion

Current Distance | =

Time Cost

Energy Cost
Wourney Information Recorder

Gradient
Braking Lim

3) Constant Power Mode.  Above the base velocity of
the train, the constant Tractive Effort Mode switches to
a Constant Power Mode to continue to accelerate the
train.

4) Reducing Velocity Mode. If at anytime, should the
velocity of the train overshoot the velocity limit, this
mode will be turned on to quickly reduce the velocity.

5) Braking Power Mode. This mode is for the braking
operation. The basic philosophy behind this can be
interpreted by (10).

v = V2aS (10)
Where:
« a is the braking deceleration imposed by constant braking
effort;

¢ vy is the proposed velocity for braking;
e S is the distance to the next station.

If vy is greater than the current velocity, the braking mode
should be activated, ensuring that the train is stopped com-
pletely at the next station.

For example, using the current velocity of the train, the
processor is able to select whether the Constant Traction Mode
or Constant Power Mode is active and then sets the state for
the next calculation step. The Constant Traction Mode selects
a constant traction effect for train operation, while in Constant
Power Mode, the tractive effort is calculated using (11).

F=Pu./v an)
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Controlled Power Efficiency Characteristic
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Fig. 4. Controlled diesel engine power efficiency characteristic

Where:
o F'is the Tractive Effort;
o P4, means the current Maximum Engine Power;
o v is the current velocity of the train.

The parameters for the Single Train Simulator are shown in
Table II.

B. Engine Description

1) Engine Efficiency Map: The diesel engine is represented
by a nonlinear static efficiency map which describes the
instantaneous Brake Specific Fuel Consumption (BSFC) of the
engine with different engine speeds and engine output power.

(= f(Pe,w) (12)
n=C¢/Pe (13)
P, =Tw (14)

Where, ( is the fuel rate in gram per second (gs—1), 7 is BSFC
in gram per joule (gJ 1), T is the engine output torque and
w is the engine speed. To simplify, engine power efficiency is
defined by (15):

1= Fe/Py 15)

Where the Py is the power converted from the fuel at a fuel
rate of (.

The engine speed and power in this simulation has been
limited to a single operating line on a typical engine efficiency
map, i.e. each engine output power corresponds to a unique
engine speed (following a propeller curve). The relationship
between output power and fuel cost is convex, which is typical
for most engines [21]. This convex shape implies that the most
efficient operating point is below the maximum power output
[30]. A characteristic fuel efficiency curve of a diesel engine
used in similar simulation studies is displayed in Fig. 4 [31].

2) Energy Consumed Calculation: Each iteration step in
the STMS is one second, thus the average power over that
time step is numerically equivalent to energy consumed in
that time step. The total energy consumption is calculated by
integrating the power history. Between one iteration step and
the next, there is a limitation for the power slew rate of each
engine. It has been assumed that in II-B1, within one second,
the Maximum Power Switch P,,,s from one state to another is
30 kW. This means that the maximum total power difference
from one second to the next is £90 kW.

III. PROBLEM DEFINITION

The optimization is inspired by the fact that the total power
demand can be met by a combination of unique power outputs
from each engine. Additionally, the individual engine states are
constrained by previous engine states and restrict the future
engine states (governed by the positive and negative engine
power slew rates). This enables a complex decision making
procedure to be defined in order to calculate the required
output power from each engine.

The first part of this section will introduce the optimal
objective and constraints. The second part will review the
relationship between engine states and fuel cost.

A. Optimal objective and constraints

The objective of the power management strategy is to
improve the fuel economy of the vehicle by distributing the
power demand between the 3 engines. This can be formulated
as an optimization problem:

min J(x) subject to G(z) <0 (16)
The cost function J(x) represents the total fuel cost in an

arbitrary duty cycle within a time length . (as expressed in
(17)). G(x) < 0 accounts for the linear constraints.

te
J(PA,PB,PC):/ fuelrate(Py, Py, Pc) dt 17
0

The operation limitations of each engine set the boundaries for
each engine power Py, Pg, Pc. 18 illustrates that at any time
during the journey, the engine can not exceed its operation
limit defined by equations (19) and (20).

PA min(t) S PA(t) S PA max(t)
PB min(t) S PB(t) S PB max(t)
PC min(t) § PC(t) S PC max(t) vt S [Oatc] (18)
The upper limit P, i, and lower limit P, ;5% of each engine
power output varies depending on the previous engine output
P pre, Maximum Power Switch (effectively the maximum
power slew rate) P, and Maximum Power Output. The
decision process can be expressed as follows:

Pe re_Pms lfPe re_Pms>0
Pomin=1q " ’ ’ ’ (19)
0 if-Pepre_—Pmpsg
Pc rc+Pms lfpo rc+Pms<Pmax
P max = ’ : . ? ? (20)
Rnax if Pe pre+Pmps meax

It is assumed at every instance that the driver’s power demand
P, should be satisfied and the following condition should be
met:

Pa(t) = Pa(t) + Pa(t) + Po(t) @21
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TABLE II
KEY PARAMETERS FOR SINGLE TRAIN MOTION SIMULATOR

Effective Maximum Constant Approximate
Mass(tonnes) Power(kW)  Torque(kN) Braking

Effort(kN)
168.5 1680 66.12 -82.65

Davis coefficients

A(N) B(N/(m/s))  C(N/(m/s)2)

5.42 0.07 0.012

Three Engine Power Output Vectors for 100 kw Power Demand
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Fig. 5. Total power state vector in 3-D space. The magnitude of the vector
is 100 on any point on the triangular surface

B. Total Power State Vector and Fuel Cost

The total power state vector is represented by
[Pa(t), P(t), Pc(t)]. As has been stated in (21), all
the engine output should meet the current power demand. If
all the possible combination of engine outputs are plotted in
3-D space, a triangle plane is produced as shown in Fig. 5.

In Fig. 5, some of the engine states represented by black
circles have been plotted on a triangular plane. At any point
on this plane the magnitude of the total power state vector is
constant. Since all the engine output must be non-negative, this
triangular plane is only in the positive quadrant vector space,
mathematically expressed as Q = ((X,Y,2)|X,Y,Z >0) €
R3.

An axis transformation is performed to demonstrate the
relationship between the engine states and the fuel cost. The
new Y axis and X axis are shown in Fig. 5. The new Z
axis is perpendicular to both the new X and Y axes and
represents the fuel cost based on the data within the triangle.
The transformation has the following features:

1) The higher the power demand is, the larger the area
covered by the triangle.

The three vertices of the triangle each represent single
engine operation.

The edges of the triangle represent dual engine opera-
tion.

Any point on the surface (not on an edge or vertex)
represents triple engine operation.

2)
3)
4)

After the axis transformation, by applying the fuel cost
function described in section II-B, the relationship between
different total power state vectors and fuel cost is demonstrated
in Fig. 5 for both high and low total power demands.

In Fig. 6(a) and Fig. 6(b), it is easy to identify that a
significant change occurs when power demand increases from
100 kW to 800 kW. When the power demand is 100 kW,
the fuel cost is highest in the center area and lowest in the

Fuel Cost Surface of Different Engine States at Power Demand of 100 kW
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(a) Fuel cost map for power demand of 100kW

Fuel Cost Surface of Different Engine States at Power Demand of 800 kW
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Fig. 6. Relationship between engine states and fuel cost under various power
demand

edge area. This implies the most fuel efficiency operation is
to use one engine. At 800 kW, shape of the fuel cost surface
is inverted and the most efficient operation is where all three
engines are used equally.

Both of the two cases in Fig. 6 raise the possibility of
complex dynamic decision making. Subject to the total power
demand, the most efficient engine operation will change dy-
namically. The constraints of the power slew rate of each
engine adds additional complexity. The solutions and results
to this problem are discussed in section IV using two different
methodologies.

IV. SOLUTIONS AND RESULTS

This section proposes two typical methodologies for fuel
efficient power management strategies. Section IV-A will
investigate the application of one global optimization strategy:
Dynamic Programming (DP) based on Bellman’s Principle of
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Optimality [32]. Section IV-B will discuss an adaptive on-
line power management strategy developed from DP. Due to
the requirement for the whole journey profile to be known
in advance, and the intensive CPU time associated with this
method, DP is not suitable for on-line optimization. However,
the results from DP can provide expert system rules informa-
tion which can be incorporated into on-line applications [33].

A. Dynamic Programming

1) Introduction: Dynamic programming is a method for
discrete optimization problems in which a set or sequence of
decisions should be made in order to optimize the objective
function. For each decision, the subproblem can be solved in
a similar manner. An optimal solution of the original problem
can be found from optimal solutions of every sub-problem
[34].

The DP method is based on Bellman’s Principle of Op-
timality: “An optimal policy has the property that whatever
the initial state and the initial condition are, the remaining
decisions must constitute an optimal policy with regards to
the state resulting from the first decision ” [32]. This assertion
points out that the optimal policies could be derived from the
suboptimal polices whose improvement will give rise to the
improvement of the whole policy.

The optimization procedure using dynamic programming
could have the mathematical form of optgsca H (d),where:

o d is called the decision.

e A is the decision space where the decisions are chosen

from.

o The optimand, H, is called the Objective function
In this case study, the decision is a series of engine state
vectors. A represents the possible series of engine state
vectors. For the optimum objective function, the expression
is H* = H(d*), where d* is that value of d € A for which
H(d) has the optimal results. d* is the optimum decision for
the engine states for the whole journey.

Instead of enumerating all the possible solutions concur-
rently in a “Brute Force” approach, the decisions are to be
made in some specified sequence di,d2,ds ..., d,, so that:
H* = opt(d, dy.ds....d,)ep{M(d1,d2, d3, ... dy)}
OptdleDl{o .. {OptdneDn{h(dla dz, d3, ey dn)}} .. }

(22)

(22) is a Sequential Decision Process.
The basic form of a dynamic programming functional
equation is:

f(S) = optacp(s){ R(S,d) o f(T(S,d))} (23)

where:

« S is the engine state at each time step

o d is the engine power change at each pair of adjacent
time steps.

e R(S,d) fuel cost in the current engine state S.

e f(T(S,d)) is a next engine state transformation or tran-
sition function, assumed as zero cost for engine states
transition.

« o sums the fuel cost for a single decision.

An optimal decision consists of a series of engine state
vectors, i.e.[Pa(t), Pp(t), Po(t)], where P4(t), Pp(t) and
Pc(t) is the instant power output from engine A, B, and C
respectively. The optimization problem now is changed into
seeking an optimal decision in the decision space which could
minimize the total fuel cost defined in (23).

2) Optimal Substructure: To illustrate this idea more ex-
plicitly, a diagram is shown in Fig. 7.

In Fig. 7, each circle symbolizes one possible engine state at
that power demand. There are N power demand data and each
power demand is denoted by P;. Here ¢ is the time sequence
number of the power demand. S; ; denotes the engine state
vector for the j;; engine state at power demand of P;, where
7 < M; if there are M, possible power state vectors for a
power demand of P;. Each engine has a fuel cost based on
the fuel efficiency map in Fig. 4, denoted as E; ; for each
power state vector .S; ;. The real line arrow represents the
search directions and the dashed arrows are for the optimal
path.

Generally, the number of possible power state vectors are
innumerable. To simplify the search some assumptions have
been made:

o There are two types of state vector which should always
be included in the engine state vector searching space.
One is an evenly operating mode vector in which power
demand is evenly divided between all the engines, and
the other one is the least engine operating mode vector
in which the fewest possible number of engines are used
to achieve the power demand.

o The engine power states are assumed to have quantized
values (with an increment of 30 kW). This will reduce
the number of possible power state vectors without com-
promising grade of global optimality.

« To avoid duplication of power state vectors, one assumes
that power output from engine A is no less than B and
power output from B is no less than C.

o It is assumed that, during the braking and stopping op-
eration, the power demand is zero and all engine outputs
are zero. As the searching route will definitely go through
Zero output states, i.e. the zero power states are one of the
optimum states series, the optimization could be operated
separately from zero power demand to next zero power
demand in a smaller searching space exactly as shown in
Fig. 7.

The optimization procedure is performed backwards. In Fig.
7, suppose that the minimum fuel cost from Sy _3 2 to final
state Sy, is through Sy_26. Now it can be concluded that
the fuel cost from states Sy_2 6 to final state Sy must also
be minimum. The reason for this is that if there are other
possible routes between Sy _s ¢ and final state S which cost
less fuel and are also reachable from Sy _3 2, we could easily
substitute this path to yield a lower fuel cost from Sy_32 to
the final state Sx. More generally speaking, for such engine
states problems, an optimal solution to a problem (searching
for minimum fuel cost through Sx_3 2 to the final cost),
contains an optimal solution to the subproblem, i.e. obtaining
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Fig. 7. Dynamic programming evolution diagram

the minimum fuel cost engine state vector series through
Sn—26. This property is referred to as optimal substructure
making Dynamic Programming a suitable method for such a
problem [35].

3) Solution: Dynamic Programming aims to find an optimal
solution recursively from the optimal solutions to subproblems
as discussed in IV-A2. F;[j] denotes the minimum fuel cost
engine path from engine states S; ; to the final engine state. If
F;[j] finally defines the minimum fuel cost engine path from
S1,1 to final states Sy, the optimal engine states path is
found, denoted as F™*. F'* is defined in (24):

= min(ELl + FQ[H7 Eiq+ FQ[QL LB+ FQ[MQ])
(24)

Where, E;; is the energy consumption of the first Engine

state. For the first step, from Sy 1 to Sy_1,;, Fn—_1[j] could

be defined in (25):

Fn_1[l]=Enx1+ En-11
Fn_1[2]=En1+ En-12
Fn_aMy_1)=En1+ En_1,my_, (25)

Note that if Sy 1 is not reachable for any engine states
Sn—1, the corresponding F'x_1[j] should be set to infinity
to rule this engine path out of the future searching range. Also
note that, for each Fy_1[j], the next engine states to achieve
this minimum fuel cost F_1[j] should be stored to find the
optimum engine states path. It is proposed that another storage
space is specified, named as R;[j] to store the next engine
states for F;[j].

Now consider the more general case for any F;[j] where
i =1,23,...,N—1and j = 1,2,3,...M;. Recall that
the minimum fuel cost engine path through engine state .S; ;
could be derived from the minimum fuel cost engine path

TABLE III
THRESHOLD POWER DEMAND VALUE
Threshold Power Demand | P;p1 Pipo
Value(kW) 382 686

from previously calculated minimum fuel cost F;_;[j] where
= 1,2,3,... M;. The definition of F;[j] can be found in
(26).

Fi[j] = min(Fi 1[N+ E; j, Fi 1 [2]+E; 5, . ...
(26)
By combining (25) and (26), a more general form for the

minimum fuel cost F;[j] is defined.

En;+En_1,1 if i=N
Fl[]} = min(Fi_l[l] + E@j, Fi_1[2] + Ei,j7
o Fi g [M; 4] —I—Ei,j) ifi <N
(27

After the final minimum fuel cost F[1] is found, it is straight-
forward to find the next engine states to achieve this fuel cost
from the R;[1]. By doing this recursively, each engine state
through the whole optimum path can be identified and the
minimum fuel cost engine states path is found.

B. Adaptive Online Strategies

Dynamic programming is able to obtain the global optimal
engine states path for the journey. However, the whole journey
profile must be obtained in advance. This is obviously not
possible for online power management [33]. This section will
discuss the development of an adaptive online strategy for a
potential real time operation using the results generated from
DP.

1) Threshold Power Demand: Based on the results of
Dynamic Programming, it is found that with a different total
power demand, there is a preferred number of engines which
produce the best fuel economy, referred to as Preferable Num-
ber of Engines (PNE). When the power demand is medium,
e.g. during the course of cruising, the global optimization path
shows that the best way to supply the traction power is to use
only two engines. This type of characteristic can be used to
develop a rule for an on-line intelligent power management
strategy. From the current power demand, it is possible to
calculate the preferable engine power split between the three
engines.

Fig.8 illustrates the general idea of preferred engine number
decision based on current power demand. The threshold values
are decided based on the following two presumptions:

o There are no such engine states with two of the engine

output powers being zero for power demand above Pip1;

o There are no such engine states with any of the engine

output powers being zero for power demand above Pijs.
These two threshold power values are listed in TABLE III
using the results from the DP optimization.

2) Problem Formulation: After the preferable number of
engines based on two thresholds FPj,; and FPje, has been
chosen, each preferable engine output can be determined,
as shown in Table IV. P, A(NAt), P,..B(NAt) and

Fi1[M;_1]+E; ;)
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TABLE IV
PREFERABLE POWER DISTRIBUTION BASED ON VARIOUS POWER
DEMAND
Power Demand P, | Preferable Num. | Preferable Power Distri-
(kW) of Engine | bution
NoFEpre
Pore A(NAL) = Py
Iid(]\([ ]%2 t)< NoEpre = 1 Pore B(NAL) = 0
thi Pore C(NAt) =0
P (NAt) < PprcA(NAt) = Py/2
Py(NAt) < NoFEpre =2 Ppre B(NAt) = Py /2
Pina (NAL) Pore C(NAt) =0
Pore A(NAL) = Py /2
]Izth(’j\(ﬁﬁtii NoEpre = 3 Pore BINAL) = Py /3
d = 7 max Pore C(NAt) = P;/3

Fower(kW)

Preferable
Power at
Time (N+1)
At

Pupatyz oo R (R o ’

Power
Qutput at
Time N At

Pa((N+1)At)/3 1 —— - () (R —
1 I 1
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Fig. 9. Illustration for minimization of discrepancy

P,..C(NAt) are the preferable power outputs for each en-
gine. However, there is usually a discrepancy between current
engine output and preferable engine output since the power
demand changes dynamically. For example, at time nAt, the
total power requirement is satisfied with two engines working
and the preferable engine output equal to the current working
engine output. At time (n+1)At, the power demand increases,
and engine C is brought into operation. Engine C was giving
zero output power at time nAt. For engine C, the discrepancy
gap between current engine output and current preferable
engine output could be very large.

Though it is not possible to achieve the current preferable
engine output due to the power slew rate limit, it is possi-
ble to minimize the current total discrepancy to achieve an
output power as near as the preferable one. Fig. 9 illustrates

TABLE V
ONLINE POWER DISTRIBUTION

PA((N + 1)At) = Pd((N + 1)At)
NoEopy =1  Pp((N+1)At) =0

Po((N + DAL = 0

PA(N ¥ )AL = PA(NAL) T AXE (NAD)
NoEopt =2  Pp((N + 1)At) = Pg(NAt) + AXE,(NAI‘/)

Po((N + 1)At) = 0

PA((N T DAL = PA(NAD T AX, (NAD)
NoEopt =3  Pp((N +1)At) = Pg(NAt) + AX}*B (NAY)

Po((N + DAL) = Po(NAY) + AXE(NAL)

the concept of minimization of the discrepancy between the
current engine output and next time preferable engine output.
At time NAt, the power demand is P;(NAt), the preferable
engine number is two. All the engines are working on their
preferable states as shown by the grey circles, i.e. P4 = Pg =
P(NAt)/2 kW and Po = 0 kW. At time (N + 1)At, the
power demand changes to Py((N + 1)At) and the preferable
number of engines changes to three. At this time step the
preferable engine output changes as shown by the black circles
in Fig. 9. Each engine output is defined by P, A((N+1)At),
Pyre B((N + 1)At) and P, C((N + 1)At), and X 4(NA¢)
Xp(NAt) and X (NAt) denotes the discrepancy gap for
current engine output and next preferable engine output.

XA(NAt) =PA(NAt) — Poo s A(N + 1)AL)  (28)
Xp(NAt) =P5(NAt) — Ppes B(N + 1)At)  (29)
Xo(NAL) =Po(NAL) — Py C((N + 1)At)  (30)

Here we define the total discrepancy gap at time NAt
denoted by D; as follows:

Dy(NAt) = | XA(NAt)| + [ X5(NAL)| + | Xc(NAL)| (31)

The optimum change power of each engine, will be
the change that minimizes D;((N + 1)At). D} ((N +
1)At) denotes the minimum total discrepancy, AX% (NA¢),
AXE(NAL), AXE(NAL) to be each change of engine out-
put. One obtains:

D ((N +1)At) = min(Dy((N + 1)At)) (32)

A set of variables AX4,AXp, AXc are introduced to
minimize D;(NAt), where AX 4, AXp, AXc denotes the
change of each engine power output during next time step,
shown in (36).

To find the set of engine power change values for the
minimum Total Discrepancy, a constrained nonlinear opti-
misation has been implemented [36]. The paper solves the
problem using the Optimization Toolbox™ in MATLAB. The
constraints are listed below:

—Prps SAXA(NAL) < P (33)
—Ppps SAXB(NAL) < Pyps (34)
_Pmps SAXC(NAt) S Pmps (35)

Py.ps 1s the positive Maximum Power Switch in II-B.
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Fig. 12. Distance time graph, and distance height graph

AX 4 (NAt) + AXp (NAt) + AXp (NAt) = Pdiff (NAt)
(36)
Pyisf(NAt) is defined as Py((N + 1)At) — Py(NAt)
which is the power demand difference between current total
engine output and next total engine demand. These constraints
are set to ensure the total power demand can be met while
the individual engine power changes are minimized. Some
points should be noted to avoid undesirable results for practical
operations. Some of the notations are listed below:

e NokL,,. denotes the current preferable number of engines

e NoE,. denotes the number of current working engines

e NoFE,,;, denotes the minimum number of working en-
gines for next power demand

e NoE,,; denotes the number of engines for optimization,
i.e. the minimization process is not always applied for all
numbers of engines

10
TABLE VI
SIMULATION RESULTS COMPARISON
Energy Consumed (kWh)  Fuel Cost (kg)
Dynamic programming 1888.3 149.1
Rule-based online 1918.4 151.4
Empirical evenly split 2019.8 159.5
max(NoEpre, NoEq)
if de,ff(NAt) <0
NoE,p = (37)

max(NoEy,e, NoEqci, NoE,in)
if Pdiff(NAt) >0

The online power distribution is summarized in TABLE V.

C. Results

In Fig. 10, the altitude profile of a typical journey is shown.
Fig. 11 illustrates the velocity profile over the route, while
showing the velocity limit at various sections of the journey.
There is a station at 40 km.

The relationship between the distance and time has been
depicted in the left subplot of Fig. 12. The right subplot, for
comparative study purposes, is displaying the distance over
height so that one could read both graphes to explain the
current height at a particular time instance.

The power distribution over the journey time is shown
separately in Fig. 13 and incorporatively in Fig. 14. Since the
negative braking power demand results in zero power output
from each engine, it is emitted in this plot.

Fig. 15 shows that at the beginning of the journey, the
power demand is increased from zero to a maximum point to
accelerate the vehicle. During this course, each engine starts
in sequence. This can be explained by the Preferable Engine
Number computation, i.e. the preferable engine number for
best fuel economy varies during the initial acceleration phase.
The DP helps to locate the power change instant for each
engine.

The other three subplots show the power output from engine
A, B, and C respectively. Each of the subplots shows results
from both the proposed strategies. Fig. 15 shows a magnified
view for both strategies. The good level of agreement is due
to the intrinsic sub-optimal characteristic. In our rule-based
online strategy, the preferable engine output is basically an
approximation of the results from DP and not all the approxi-
mation can match the global optimization result. Nevertheless,
the power distributions using both strategies depict a high
degree of agreement. To summarize, realtime operation of
power management can benefit from the online strategies
developed using off-line global optimization techniques.

TABLE VI shows the simulation results for the three power
management strategies. Empirical evenly split strategy means
that power requirement is evenly divided between 3 engines
all the time. The conversion between the energy consumed and
fuel cost is based on the energy density [37]. As listed, the
energy density for diesel oil for automotives is 45.6 GJ/tonne.
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Fig. 13. Power distribution over time using dynamic programming and online rule based strategy (separate version)

V. CONCLUSIONS These strategies are applied to achieve improved fuel economy

Recently, many power management strategies have been and better environmental performance. However, so far, these

applied and realized for hybrid vehicle propulsion system.
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technologies have not been considered for a conventional
propulsion system. This paper takes a typical British DMU
railroad vehicle as a case study and explores the applicability
and transferability of an optimal power management strategy.
Due to the electrical inter-connection configuration, which en-
ables less engines to work during the lower power requirement
journey range, more advanced control strategies are becoming
applicable for power management systems.

This paper firstly discussed a platform for the study of the
power management strategies: Single Train Motion Simulator
(STMS). Through discretization of the basic Newton Equation
and modern Resistance Calculation (Davis Equation), a single
train motion simulator could be modeled. This simulator is
able to take account of the geography and driving style to

Power Distribution Vs. Time

T SR R R,
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 8 90 95 100
T T T T T T T T T T T T T T

T T T TR M AU R
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 8 90 95 100

L T R L
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
L e s s L A S S S S S S

i T T S T S R A S R R
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100

Time (Second)

(b) Initial stage of power distribution by online rule based

Initial stage of the power distribution for both power management strategy

produce an online output of train position, train velocity, and
current power usage etc. Based on this, Dynamic Programming
together with an Adaptive on-line rule-based strategy for this
typical British DMU train are proposed in this paper. Some
improvement and modification has been adopted to decrease
the search complexity and thus total computation time while
maintaining acceptable optimization precision. Based on the
results of dynamic programming, an adaptive online rule-based
strategy has also been discussed for further online simulation
using large scale non-linear programming.

After transferring the energy consumed into diesel fuel cost,
both of the simulation results indicate that a remarkable energy
saving has been achieved using both of the two strategies.

This paper considers the engine efficiency map in two
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dimensioned space. Further investigation is needed for the
study of transient characteristics of the Diesel Engine.
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