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Abstract—The inexorable increase of energy demand around
the world has put the energy-saving technology into the hot spot
for railway transportation. The train speed trajectory optimiza-
tion based on optimal control, coasting control and collaborative
control inside railway systems is a popular methodology to
enhance the energy efficiency. This paper studies a special but yet
interesting problem, i.e., the partial train speed trajectory opti-
mization problem and proposes a complete mathematical model
where Mixed Integer Linear Programming algorithm can be
directly applied. During the transient operation process of a train,
the speed of train is often considered monotonously increasing
and decreasing in normal conditions without extreme gradients.
Given that, the proposed method can quickly locate the train
speed profile under practical engineering constraints and the
objective function is either to maximize the regenerative braking
energy or minimize the traction energy. Such a method with a
short computational time may become particularly interesting for
online cases where a train is altering its speed in a fixed distance
and time due to the operational requirement. The generated
speed trajectory can be used to guide the train to control its
speed or in a normal braking operation. The robustness and
effectiveness of the method has been demonstrated through a
number of detailed simulation results in this paper.

Index Terms—mathematical modeling, energy efficiency, elec-
tric vehicle, regenerative braking energy

NOMENCLATURE

« The instant gradient for the current position of
the train.

Ad; The distance traveled when train reduce its
speed from v; 11 to v;

Ah; The height difference between h; and h;

At; The time that elapses when train reduce its
speed from v;11 to v;

A1, A2, -+, As5 The special order set type 2 with 5 elements

A, B and C Davis coefficients

a; The electric traction energy consumed when
the train is acclerating from v; to v; 41
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Aprm The maximum allowed accleartion or deceler-
ation rate.

D The total braking distance

D; Distance information for the known locations.

d; The distance between the final position and the
current position where the train is at a speed
of V;

d;- The distance interval between the location
where the train is at a speed of v; and the
location where the train begins to brake

d;j 1im The distance between the speed limit switch
point and the beginning position

Et The regenerative braking energy in the dis-
tance interval Ad;

FI" The electric traction effort imposed when the
train is acclerating from v; to v;41

F The instant electric braking effort

Fiq Average drag force between v; and v;4

The average maximum electric braking and
traction effort between speeds v; and v; 1

Fi,ebma E,eter

H; Altitude information for the known locations

h; The current height at the position where the
train is at a speed of v;

1 Index of candidate speed

M Mass of the train

M’ Effective mass of the train considering rotary
effects

Tins Tmae ~ The minimum time and maximum time al-

lowed for the entire acceleration and decel-
eration process.
v; Candidate speeds

Vi avg Average speed between two adjacent speed
candiates v; and v;41

V. lim The speed limit level to the left of each speed
limit switch point

VUmaz The maximum allowed operation speed of the
train

N Total number of candidate speeds

T The fixed time allowed for the entire acceler-

ation and deceleration process

I. INTRODUCTION

ITH the inexorable increase of the energy demand
Wand more emphasis being put on carbon emissions,
railway transportation has been more concerned about the
energy efficiency than ever [1]. Traction system plays a major
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role in moving the railway vehicle to satisfy customer service
requirements and on the other hand, consumes a large propor-
tion of the energy consumption for the railway transportation
system. Improving the energy efficiency of the traction system
brings significant impact on the total energy consumption of
the railway transportation system [2].

The train speed trajectory optimization to reduce the energy
consumptions has been the focus for a large number of re-
search papers in the past few decades. Different methods have
been proposed to find “the optimal train speed trajectory” with
the minimum energy consumption or other costs. One of the
commonly adopted techniques is to apply the designed coast-
ing operation which uses up the allowable time and reduces
the non-regenerative braking energy by varying the coasting
margin. Due to the significance of coasting operation, during
which the motors or engines are virtually shut down, a balance
between the operation time and energy consumption can be
optimized [3], [4]. Besides the coasting control, the general
control using a variety of heuristic and numerical algorithms is
also applied to locate the energy-efficient train trajectory [5]-
[10]. By applying the Pontryagin Maximum Principle (PMP)
in optimal control, global optimal solutions can be obtained
given that certain conditions are met [11]-[15]. Discretization
of the state space, in which each state contains the information
of distance, speed, time and energy consumption etc., the
dynamic programming and heuristic algorithms can be applied
to obtain the discrete speed trajectory. However, the dynamic-
programming-based methods suffer from the “curse of dimen-
sionality” and state approximation due to discretization and
has hardly found its application in online cases due to the
heavy computational loads [6], [16]-[18]. In other papers, the
train trajectory optimization problem is considered as one sub-
problem in a two-level optimization problem for multitrain
operations and timetable optimization [19]-[21].

On the other hand, as an important operation for electric
railway vehicles, regenerative braking converts the kinetic
energy into the reusable electric energy and improves the
energy efficiency of the traction system [22]-[24]. Papers
[25], [26] investigate the application of regenerative braking
in electric railway systems. With the proper modeling, the
regenerative braking energy (RBE) can be optimized together
with the entire speed trajectory and achieve the optimal energy
efficiency using PMP [12]. In order to improve the utilization
of regenerative energy, some recent papers tries to improve
the train scheduling to maximize the overlappings of train
accleration and braking phases within a railway network [27]-
[30]. In particular, electric load flow calculation is considered
in [30], [31], putting on extra emphasis on electric network
modeling and providing insights on the impact of electric
network loss for regenerative braking energy recovery. Moti-
vated by the unique characteristics of braking trajectory, some
previous studies have been conducted on the partial train speed
trajectory to maximize the regenerative braking energy (RBE)
[17], [32]. Partial train speed trajectory optimization takes only
one typical part of the entire speed trajectory as the optimiza-
tion objective, e.g. the braking part, where the constraints can
be linearized and thus simplified as demonstrated in [17], [32].
The significance of the partial speed trajectory optimization to

maximize the RBE can be found in the applications where the
regenerative braking are commonly applied and limited space
for improvement on other operation due to service constraints,
and uncertainty of train operations [17] .

Based on the previous work demonstrated in [17], [32], this
paper proposes a new mathematical model in which the Mixed
Integer Linear Programming (MILP) can be applied. The speed
series of the vehicle is assumed to be monotonously decreasing
or increasing without losing its feasibility in practical appli-
cations and the speed trajectory is constrained within a fixed
distance range and time window. Optimal solutions can be
found for practical cases involving the engineering constraints
such as the speed limits, route gradients and the characteris-
tics of electrical motor. Especially, both electric braking and
traction energy generated from the electric motors due to
route gradients can be modeled and optimized simultaneously.
It is worth mentioning that all these engineering constraints
could be linearized based on the reasonable assumption of
monotonicity of the speed series.

The advantage of the proposed method includes the robust-
ness, flexibility and high computational efficiency. Compared
to previous work [17], [32], the main contributions of this
paper includes more complicated modeling involving gradients
and accelerations to address issues arising from practical cases.
The research outcomes can be easily extended to an intelligent
transportation system or railway signaling system to facilitate
the vehicle control systems and improve the energy efficiency.

This paper is organized as follows. Section II covers the
MILP mathematical model where the non-linear speed limit
and gradient constraints are included. Section III demonstrates
case studies in various scenarios for the braking operations
where RBE is to be maximized. Section IV discusses a case for
acceleration operations where the electric motors provide the
traction effort and the total traction energy is to be minimized.
At the end, conclusions are drawn and future work of the
research is discussed in Section VI.

II. MATHEMATICAL MODELING

During the braking procedure of a train, the braking effort
can be provided by both electric and mechanical braking
efforts. The mechanical braking is also commonly referred
to as the “air” braking. A combination of braking efforts,
the drag forces and forces due to gradients provide the total
speed-reducing force to bring the speed of train to zero. In
this paper, the total braking distance is considered as a known
parameter while it actually varies from case to case. The train
is required to arrive at the demanded position, i.e. the next train
station within an allowed time window. The RBE can only be
generated by the electric effort provided by the electric motor
and for different train speed, the maximum electric braking
effort will be different. A typical electric motor characteristics
against the train speed, along with the changing drag forces
due to air aerodynamic drag, rolling resistance and bearing
drag against the train speed is shown in Fig. 1. It is vastly
different in terms of traction characteristics of electric motors
during motoring and braking mode and the demonstration of
this characteristics curve provides only a general relationship
between the motor effort and the train speed.
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Figure 1. Motor traction and imposed drag force characteristics for a typical
suburban train.
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Figure 2. Schematic of the MILP model for braking trajectory optimization.

The mathematical details of the MILP model are introduced
as follows and the schematic demonstration is shown in Fig.
2.

It is assumed that there are series of monotonously increas-
ing speeds along the braking trajectory, i.e. v1,ve,...,vy. and
v1 < v2 < ... < vy. For a typical braking trajectory where
the train is demanded to stop at a set distance, v; = 0 is the
final stop speed and vy is the initial speed of the braking
procedure. Note that the actual operation of the train begins
from vy and ends at v;. However, in order to simplify the
modeling, it is assumed the distance is increasing with the
speed from v; to vy while taking all the braking or drag
forces as a positive force for this artificial “speed-up” process.
This simplified modeling techniques will not affect its final
optimization result.

In this paper, each speed is corresponding to the current
train position. The distance between v; and v;; means the
distance between the positions where the train is at the speed
of v; and v;1;. The total number of the speed N is set to
sufficiently large to ensure that the average speed between two
adjacent speeds will precisely reflect the current train speed

and other conditions related to the train speed. If IV is set and
the initial speed vy and final speed vy is known, the speed
series is determined.
. UN —V .
v; :vl—i—(z—l)% 1=1,2...
The average speed v; 4,4 between v; and v;4 is calculated
by (2):

N )

Viavg = (’l}i + Ui+1)/2 1= 172, ..N -1 (2)

The average drag force between v; and v;; can be obtained
by (3):

Fia=A+4 Buiayy+Cv}o, i=12..,N-1 (3

where A, B and C are the Davis coefficients.

The average maximum electric braking and traction effort
between v; and v;1, which is denoted by Fj ¢t and Fj i,
respectively, can be obtained by linearly interpolating the
electric braking and traction characteristics. F; ¢y, > 0 and
F} etm < 0. Refer to Fig. 1 for details. The consideration of
real characteristics of regenerative braking operations can be
easily incorporated as long as the characteristics are directly
related to the speed of the train. For example, the regenerative
braking effort can be set gradually decreasing to zero at
lower speeds to model the inactiveness of regenerative braking
during low speeds. In this paper, the electric braking and
traction characteristics are regarded the same but nevertheless
different characteristics can be easily adopted for both braking
and traction in different cases.

The distance and time between v; and v;4; is denoted by
Ad; and At;, where ¢ = 1,2,3,..., N — 1. In the proposed
model, Ad; acts as the decision variable of the model. The
relationship between Ad;and At;can be represented by (4).

At; = Adi/v{i,avg} 4)

Once Ad; is determined, the entire solution for optimal
braking trajectory is obtained. As shown in Fig. 2 , d;is
defined as the distance between the positions when the train is
at a speed of vg and v; and is calculated in (5). d; will be used
as the input to locate the information of the current height for
the train at the speed of v;, denoted by h; using the piecewise
linear relationship as shown in Fig. 4.

i—1
di=7  Ady 5)
n=1

The total distance constraints should be met as shown in

(6).

D= Adi=dy (6)

D is the total braking distance. The total time constraints
should be met as listed in (7). Without loss of generality,
the total time is constrained in a allowed time window as
determined by [Tinin, Tmaz)- In an extreme case, Tpin =
Timaz = T, where T is the fixed journey time for the entire
braking procedure.
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The deceleration rate between v; and v;11 should not exceed
the maximum braking rate defined by (8).
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Aprm is a positively constant 1.2 m/s? in this study. Hence,
it yields:

2 2
Vi1 — Vi

Ad; > . €))

o 2Abrm

Thus, according to (4) and (9), it can be found that both At;
and Ad; should be no less than zero. In order to incorporate the
gradient information, we define Ah; as the altitude difference
between v; and v;41. The schematic demonstration for d; ,
Ah; and h; are shown in Fig. 3.

The maximum electric braking effort provided by the
electric motors is limited by two factors: the electric motor
characteristics and the maximum allowed total braking efforts.
In other words, the electric effort provided from the motor
should not exceed the maximum available electric effort and
should not be too large so that the total braking efforts exceed
the maximum allowed one. Two more constraints should be
imposed in the model as shown in (10) and (11), where Efb is
the RBE generated in the distance interval Ad;. M "and M are
the effective mass and mass of the train respectively. In (11),
it is demonstrated that the RBE can be negative to represent
a traction operation with the presence of gradients and it
is observed that RBE can be modeled in linear constraints
including the altitude difference in each distance interval Ad;.

B < (M al" ~ g+ Mohh)Ad, (10)

- Fi,ethdi S Eieb § Fi,ebmAdi (11)
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Figure 4. A piecewise linear model for altitude information.

The relationship between d; and h; can be modeled using
the piecewise linear (PWL) relationship. Due to the special
discrete characteristics of altitude profile for route commonly
adopted in railway modeling and simulation [3], [33], PWL
is a well fit to locate the current altitude information for each
speed.

An example with 5 altitude switch points is shown in Fig.4.
It is assumed that there are 5 known locations with distance
D, and altitude H; and altitude information can obtained using
the linear interpolation. We also assume that D; = 0 and
Ds = D, so that all the interpolated points are between D,
and Ds. Note that the number of altitude switch point can be
varied according to the constraint of the case scenario.

The following mixed-integer constraints should be imposed
on the MILP model:

M+ dodo A5 =1 (12)
NS>0 i=1,2,---5 (13)
AMD1 4+ XoDs... + A5D5 = d; (14)
MHL +XoHo+ ...+ AsHs = hy (15)

where A1, Ao, ..., A5 are the special order set type 2 (SOS2)
and they are non-negative real numbers as defined by (13) [34],
D1, D, ...D5 are the 5 known distances and Hq, Ho, ..., Hs
are the 5 corresponding altitudes for each switch point in the
example as shown in Fig. 4. The number of known points can
vary from case to case.

By definition, no more than two non-zeros can be found
for A1, Ao, ..., A5. SOS2 speeds up the search procedure in
branch and bound algorithm. Although members of SOS2 are
continuous, the model containing SOS2 itself remains discrete
and requires a mixed integer optimizer for the solution [35].
This ensures that a PWL relationship between d; and h; can
be established. Considering the linear relationship between d;



Speed

Vjs1lim d;1im
Un
Speed limit VN1 o
@
Vtim Vit1 o
» e mmmmmme—aeaa
| . Vi
1 [ ]
°
V2 e
_____ ! Speed Limit
2 Switch Point Ad; Ady_q
| Ad, 4! = Ad; + Adys, + - + Ady_, Distance

Figure 5. Speed limit considerations for MILP model.

and the input variable Ad;, the altitude information can be
incorporated as a PWL form in the model.

Speed limits are commonly applied via signals in railway
systems. During the braking procedure, the train should keep
its speed under the limit at all time. This constraint can be
modeled using a linear inequality given the speed candidates
are monotonous. One example is shown in Fig. 5. First, a
speed limit switch point (SLSP) is defined as the location
where the speed limit is changed. Second, we obtain the
speed limit v; 5, as shown in Fig. 5. Third, we locate the
distance interval between the SLSP and the initial position of
the braking procedure, denoted by d; is,. Fourth, the speed
v; in the speed series is achieved and v; = U.Nim'. We define
another distance variable d; as follows.

In order to ensure all train speeds to be less than v; s,
when the train goes across the SLSP, the following constraint
should be met. This ensures that all the speeds higher than
v;,1im Will not reach the controlled sections by v; ;s and thus
the speed constraints will be met if all this constraints are
imposed for each speed limit.

dj tim > d, (17)

To summarize, the entire MILP model has been introduced
in this section. Using the distance interval section Ad; as
the input variables of the optimization objective function, the
optimization objective function can be presented by (II). Note
that E® is a piecewise linear function of the decision variable
Ad; which is a positive real number.

IWe assume that N is sufficiently large so that the speed limit Vj 1imcan
be equal to one of the candidate speeds v; if v; j5m € [v1,vn]. For the cases
where v jim ¢ [v1,vn] the constraints will be automatically relaxed.

N—-1
eb .
max ; B (Ady) (18)
st (1) = (17)
Ad; e R

Once the optimization has been completed, the actual force
distributions based on the optimization process can be calcu-
lated using a post-calculation process. In each distance inter-
val, the train is assumed to go through a constant-acceleration
process with very little changes on the initial speed and final
speed. (19) is used to recover the actual electric braking effort.

F., = max (M/afr —F,qg— Mg(sina), Fi,ebm) (19)

where “max” is the the maximization function to choose any
larger value between the two inputs; « is the instant gradient
for the current position of the train. « is negative if the force
due to gravity is a providing negative force against the motion
of the train. The gradient may vary over a distance interval
of Ad;. This may cause a sudden change of the braking force
but will not affect the optimization results. This is because
the optimization is dealing with the potential energy between
two adjacent positions and the changing gradients in between
has a constant potential energy. Fp, is the instant electric
braking effort for the current position of the train. (19) ensures
that the braking energy will always be maximized once the
optimization algorithm has determined the results. A good
agreement has been found between the direct optimization
results and the post calculation processes.

III. CASES FOR BRAKING OPERATIONS
A. Simple cases

In [17], a simple case scenario is discussed where the train
is braking on a level track without considering the speed
limit, the route gradients and total braking time limits. In
this simple case, the train can only apply the braking effort
but not the traction effort causing the lower bound of Ef°
to be constrained by zero value. It is concluded that an
optimal braking operation where the maximum RBE can be
achieved may include three operations. They are the full-
braking operation with both maximum electric braking and
mechanical braking effort applied, the full-electric-braking
operation with maximum electric braking effort applied and
the coasting operation with only drag force applied. Usually
the maximum-braking-rate constraint should be imposed in the
full-braking operation. The sequence of these three operations
will remain unchanged while these operations may not exist
at the same time. If applied, the full-electric-braking operation
will come after the full braking operation and the coasting will
come after the full-electric-braking operation.

In this section, a simple case study without considering the
speed limits and gradients has been conducted. The vehicle
parameters for a typical suburban train are shown in Table I.



Table I
MODELING PARAMETERS FOR A TYPICAL SUBURBAN VEHICLE
M) | M ®) | vmaz(m/s) A B C
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Figure 6. Speed trajectory and braking efforts distribution for case 1

Three cases have been conducted. The optimization con-
straints and results are summarized in Table II. The recovery
rate is the ratio of recovered RBE to the initial kinetic energy
of the train.

Table 11
OPTIMIZATION CONSTRAINT PARAMETERS AND RESULTS IN A SIMPLE
CASE SCENARIO

Case UN Trmaz RBE Initial Recover
(m/s) (s) (kWh) kinetic rate(%)
energy
(kWh)
1 44.4 o) 38.06 46.55 81.8
35 [e'S) 27.86 28.92 96.3
3 35 70 26.38 28.92 91.2

Using (19), the effort distribution can be also calculated.
The gradients information is ignored and the recovered effort
complete agrees with the speed trajectory obtained in opti-
mization results. The optimization results with the braking
speed trajectory and the braking effort distribution are shown
in Figs. 6, 7 and 8.

It is observed that the conclusions based on the optimal
control analysis agrees with the simulation results as shown in
case 1 and case 2 where no braking-time constraint is imposed.
In case 1, the initial speed is 44.4 m/s and the mechanical
braking effort should be imposed at the beginning of the
journey. The optimization algorithm will determine when the
mechanical braking effort should be removed from the braking
procedure.

In case 2, when the initial braking speed is reduced from
44.4 m/s to 35 m/s, no mechanical braking effort is needed in
the entire braking procedure and the coasting operation will
occur at the end of the braking procedure. The train speed
is usually reduced to a lower level to reduce the impact of
the drag force. In case 3, the time limit constraint is applied
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Figure 7. Speed trajectory and braking efforts distribution for case 2
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Figure 8. Speed trajectory and braking efforts distribution for case 3

based on the constraints of case 2, the operations include both
full-electric braking and coasting braking. Due to the time
constraint, the coasting operation is applied when the train is
at a high speed and the sequence of operations will by large
rely on the constraints of various case scenarios.

B. Cases with speed limits and gradient constraints

This section continues with a study on partial trajectory
optimization for the braking procedure. In this study, practical
engineering constraints including the speed limits and gradi-
ents are taken into account in optimization. The assumption for
the braking procedure remains the same, i.e. the speed of train
will be monotonous. Due to the impact of the gradients, the
electric braking effort may not necessarily be positive and will
not remain constant within a distance interval Ad;. Similarly,
(19) is applied to recover the effort distribution during the
braking procedure.

Table III lists the optimization parameters and results for
cases in practical engineering scenarios. In order to demon-
strate the impact of gradients, the relative potential energy
is calculated using: MgAh,, where Ah, is the altitude
difference between the initial position and final position. A
negative potential energy demonstrates a uphill trend between



Table IIT
OPTIMIZATION PARAMETERS AND RESULTS FOR PRACTICAL
ENGINEERING SCENARIOS
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Figure 9. Speed trajectory and altitude profile for case 4.

the initial braking position and the final arrival position as in
Case 4.

Case 4 and case 5 are the two cases with reverse gradients.
With the optimization results shown in Figs. 9 and 10, case 4 is
dealing with a route with a downhill gradient first and change
to a uphill one. Case 5 is taking a route with a gradient the
other way round and its optimization results are shown in Figs.
11 and 12.

In both cases, mechanical braking efforts are applied at the
beginning of the braking procedure to ensure that the speed
limit reduction at the position of 1500 m can be met. But
mechanical braking efforts has been kept at a minimum level
throughout the braking procedure. As long as the electric
braking effort could meet the braking effort demand, the
mechanical braking effort will be prevented from using. It is
also observed that the gradient change takes a major impact on
the operations of the electric motors. In the uphill sections, the
electric motors turn into the traction mode providing negative
braking efforts.

Case 6 is an extreme case with a close-to-shortest braking
time, i.e. 80.65 s. The optimization results are shown in Figs.
13 and 14. The gradient constraint is the same as case 5. It
is observed that the braking trajectory is taking the maximum
braking effort during speed changing due to speed limits or the
arrival requirement and keeping a minimum change close to
the speed limits. Since the speed changes insignificantly over
a long distance with a very low deceleration rate, this part
of operation can be regarded as the psudo-cruising operation.
In this case, gradients are found to have certain impacts on
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Figure 10. Forces imposed on the train during braking procedure for case 4.
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Figure 11. Speed trajectory and altitude profile for case 5.

the braking procedure. For instance, for the psudo-cruising
operation, traction effort should be imposed between 1000 m
and 1200 m while regenerative braking efforts are required for
the section between 800 m and 1000 m.

Case 7, as illustrated by Fig. 15 and Fig. 16, demonstrates
another extreme case scenario with no maximum braking time
requirement by setting the maximum braking time to infinity.
It is seen that the train speed is reduced to a very small value
before reaching the final stop point. Lower speed reduces the
impact of the drag forces imposed on the train. But it is
also noted that the speed-reduction process is mostly done
by electric-braking efforts while the mechanic braking efforts
are only imposed at the beginning of the braking process. The
mechanical braking efforts remain nearly zero until the end
of the journey. At the final session of the braking operation
between distance of 0 m and 362 m, the electric braking effort
is mainly applied to counteract with the forces due to gradients
and frag forces. The total deceleration rate is close to zero
leading to a psudo-cruising operation.

Table IV summarizes the information about the optimiza-
tion models and the computational time for each case. The
information is obtained based on a desktop computer installed
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1800

with Intel i5-3470 @ 3.20GHz CPU and 4.00GB RAM.

Table IV

A SUMMARY OF MIXED INTEGER MODEL INFORMATION AND
COMPUTATIONAL TIME FOR CASES 1-7.

Case No. of No. of SOS2 No. of Computation
No. real variables Constraints time (s)
variables

1 1332 0 1778 0.02

2 1050 0 1402 0.05

3 1050 0 1402 0.03

4 3858 351 3160 13.13

5 3858 351 3160 9.06

6 4848 441 3969 9.70

7 4848 441 3969 13.41

IV. A CASE FOR ACCELERATING OPERATIONS

In Section III, the braking effort is modeled as a positive

effort and the traction effort is modeled as a negative effort.
The objective function is to be maximized since more energy
to be resulted by the electric braking effort, more RBE
will be recovered. A similar model can be applied for the
acceleration case where the speed of the train is considered
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monotonously increasing. There are no steep gradients on the
route so that the monotonous speed series can be maintained
by the electric motors only. There are no air braking and only
electric “braking” will be applied. In practical application, this
“braking” effort is actually the traction effort to speed up the
train. The objective function is to be minimized to reduce
the energy done by the electric traction effort. Compared
to the mathematical model introduced in Section II, a few
modifications should be done in the mathematical modeling
as previously introduced in Section II.

First, (8) is no longer needed since the maximum accelera-
tion rate will be determined by the traction motors.

Second, (10) and (11) should be changed into (20) and (21)
respectively. E¢ is the electric traction energy applied during
acceleration procedure and a!” is the acceleration rate between
v; and v;41 as defined by (22).

Third, the traction effort /" can be recovered after E¢* and
Ad; are obtained.

Eft = (M/agr + Fi,d —+ MgAhZ)Adz (20)

- Fi,ebmAdi < Eiet < E,ethdi (21)
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tr __ ,Ui2+1 - Ui2 (22)

WS TR

Finally, the objective function shown in (II) will be changed
into (23) subject to constraints.

N-1

: eb
min ; E"(Ad;) (23)
A simulation study has been set up for a train to accelerate
from zero speed to 35 m/s for a distance of 1750 m and a
time of 100 s. Fig. 17 shows the speed and altitude against
distance during the acceleration process. The train is set off
from distance 0 m to 1750 m and going uphill for the first 1000
m and downbhill for the rest of 750 m. The electric motor as the
only traction effort source corresponds well with the change
of the gradient. As shown in Fig. 18, the electric effort turns
from positive to negative to respond to a sudden change of
gradient at 1000 m. Due to the total journey time constraint,
the proposed algorithm is able to locate the speed level of
psudo-cruising operation between the distance of 280 m and

1100 m.
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Figure 18. Forces imposed on the train during an acceleration operation.

The final traction energy consumption of the optimized
trajectory is 36.57 kWh and the braking energy is assumed to
be fully recovered to counteract the traction energy. The final
train kinetic energy is 21.25 kWh and increment of potential
energy is 4.63 kWh with 10.68 kWh consumed by the drag
forces.

V. DISCUSSION ON THE MODEL

The monotonicity of train speeds in the proposed model
is the fundamental assumption in this paper. The rationality
of this assumption lies on observations from urban rail trans-
portation systems where the train is required to be powerful
enough to readily increase and decrease the speed during the
journey. It is usually undesirable to increase the speed during a
braking procedure or decrease the speed during an acceleration
procedure. The proposed model tries to tackle a special but
common problem in railway engineering using a numerical
optimization technique. Preliminary results shown in [17] has
demonstrated an agreement between the optimization result
and the analysis based on optimal control theory.

Given the monotonicity of train speeds, the speed-holding,
coasting, braking and motoring operations can be approxi-
mated by giving a sufficiently small difference between two
adjacent speed candidates. However, the fundamental assump-
tion imposes limitations and constraints on the proposed model
for its potential application. It is out of the scope of this paper
to deal with more general cases where the monotonicity of
train speeds becomes impossible due to extremities of gradient
or other factors.

VI. CONCLUSIONS

Different from previous research on train trajectory opti-
mization, this paper studied a special problem, i.e. the partial
train speed trajectory optimization problem based on MILP.
Given that the candidate speeds of the train are monotonous
and the total journey length is determined, the speed trajectory
can be optimized either by maximizing the RBE or by min-
imizing the traction energy consumption. A number of case
studies have been discussed to evaluate the robustness and



effectiveness of the proposed method. The proposed method
is able to quickly locate the partial train speed trajectory for
online applications. In a simple case without the changing
gradient information, the calculation time is on a scale of
millisecond and the calculation remains in a scale of seconds
for cases with the changing gradients constraints.

With regard to the future work, the current study needs
to consider applying the proposed method in more practical
railway scenarios with the practical characteristics of braking
systems and railway signal systems. The current study only
considers electric motors and generators with an energy ef-
ficiency of 100% and ignore the practical characteristics of
regenerative braking and mechanical braking operations. For
example, the air braking may not be ready at the initial stage
of braking since it takes time to increase the pressure of the
compressed air for the entire braking system. The electric
braking characteristics can be much different from the one
as shown in our current research. The monotonicity of the
candidate speeds cannot be guaranteed if extreme gradients
exists along the route and this sets its application preference
to urban railway or high-speed railway systems where extreme
gradients are found much unusual. But nevertheless the opti-
mization method proposed in this paper can be further applied
in railway control and operations and can be further extended
to a wider range of intelligent transportation systems.
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