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Increasing the regenerative braking energy for
railway vehicles

Shaofeng Lu, Paul Weston, Stuart Hillmansen, Hoay Beng Gooi, and Clive Roberts

Abstract—Regenerative braking improves the energy efficiency
of railway transportation by converting the kinetic energy into
the electric energy. This paper proposes a method to apply the
Bellman-Ford algorithm to search for the train braking speed
trajectory to increase the total regenerative braking energy (RBE)
in a blended braking mode with both electric and mechanical
braking forces available. The Bellman-Ford (BF) algorithm is
applied in a discretized train-state model. A typical suburban
train has been modeled and studied under real engineering
scenarios involving changing gradients, journey time and speed
limits. It is found that the searched braking speed trajectory is
able to achieve a significant increase on the RBE in comparison
with the constant-braking-rate (CBR) method with only a minor
difference on the total braking time. A RBE increment rate of
17.23% has been achieved. Verification of the proposed method
using BF has been performed in a simplified scenario with zero
gradient and without considering the constraints of braking time
and speed limits. Linear Programming (LP) is applied to search
for a train trajectory with the maximum RBE and achieves
solutions that can be used to verify the proposed method using
BF. It is found that it is possible to achieve a near-optimal solution
using BF and the solution can be further improved with a more
complex search space. The proposed method takes advantage on
robustness and simplicity of modeling in a complex engineering
scenario where a number of non-linear constraints are involved.

Index Terms—energy saving strategy, train braking energy in-
crement, Bellman-Ford algorithm, dynamic programming, com-
putation efficiency improvement

I. INTRODUCTION

Energy conservation is becoming more important for mod-
ern rail transportation. It is reported that the traction energy
accounts for 60%-70% of the total energy consumption in
rail transport systems [1]. The traction energy is consumed to
overcome the resistances and transformed into kinetic energy
and heat energy. Regenerative braking converts the kinetic
energy into electrical energy and thus reduces the total energy
cost [2], [3].

A typical electric machine generally holds two working
modes: motoring and regenerative mode. During motoring
mode, the direction of motor rotating speed agrees with the
direction of torque. On the contrary, when the direction of
rotating speed opposes the direction of torque, electric machine
enters the regenerative mode. For a railway vehicle, during the
regenerative braking mode, the torque reduces the motor speed
and generates the electric power.

The regenerative braking energy will be converted by power
electronic devices into electric energy which can be fed back
into the electric power grid in the AC electric network, and
used by other adjacent running trains through the DC electric

network or stored in the energy storage devices (ESDs).
Otherwise, the regenerative energy can be converted into heat
using a large resistance bank referred to as the “dynamic
braking” [4].

Regenerative braking takes a key role in energy efficiency
for the rail transport. It is affected by various parameters
and the parameters in a DC railway case are summarized
in [5]. In order to improve energy efficiency via recapturing
more regenerative braking energy, different methods have been
adopted in past research.

• The integration of ESDs reduces the dependence on the
power transmission network and increases the effective
regenerative braking energy to be stored. Research work
proposed in various research papers have focused on
optimizing the ESDs to improve the energy efficiency
[6]–[10].

• More regenerative energy can also be achieved by im-
proving the receptivity of the DC network as the amount
of recaptured regenerative energy is constrained by the
network receptivity [11]. Timetable optimization, as one
of the feasible methods, has been applied to improve the
network receptivity to increase the recaptured regenera-
tive braking energy [12].

• Optimization of the braking effort control strategy can
lead to an improvement of energy efficiency. Optimiza-
tion on the braking force distribution strategy is reported
in [13], [14] to maximize the recreative braking energy.
The research work proposed by [15], [16] is focused on
optimizing the braking torque based on the electric motor
characteristics.

The optimization methods of the braking effort control can
be achieved by the train speed trajectory optimization to some
extent since the train speed trajectory is the direct consequence
of the applied torque of the motor. A recent paper has
considered the regenerative braking energy in their automatic
train operation (ATO) speed profile design [17]. Optimal train
control to locate the energy-efficient train speed trajectory has
been extensively studied over the past two decades [18]–[21].
Regenerative braking in these studies can be involved as part of
the constraints for the train control. The braking rate has also
been taken into account for the speed profile optimization of
a train with regenerative braking [22]. These papers only take
the RBE as a part of the optimization objectives or constraints.
The research work proposed in this paper, on the other hand,
is focused on increasing the regenerative electric braking
energy (RBE) via improving the train braking speed trajectory,
referred to as the “braking trajectory”. While the maximization
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of RBE does not necessarily lead to the maximization of
the total journey energy efficiency, this paper is motivated
by the energy efficiency improvement to be made by the
braking trajectory optimisation. The research work proposed
in the paper can be applied to evaluate the positive impact the
regenerative braking may have on an existing railway route
with limited spaces for an optimization of the entire speed
trajectory, for example, a train required to operate aggressively.
A suburban train has been modeled and the method of the
modeling has been used in a number of previous works [23],
[24]. It is assumed that the blended braking is applied where
both electric and mechanical braking are available. A graphical
search method, the Bellman-Ford (BF) algorithm [25], [26], is
proposed to search for the optimal braking trajectory with the
maximum RBE within the search space. The searched braking
trajectory will be compared with the one using the constant
braking rate to investigate the advantage of the proposed
method. The proposed method will be further verified by the
results achieved by Linear Programming (LP) in a simplified
scenario.

The organization of this paper is as follows. Section I covers
the background introduction, literature review and research
motivation. Section II covers the formulation of the objective
function and its optimization system modeling. Section III
introduces the optimization method: the Bellman-Ford (BF)
algorithm . Section IV demonstrates case studies for a sub-
urban train using BF. Section V covers the verification of
our proposed method. Finally, the conclusions are drawn in
Section VI.

II. SYSTEM MODELING

The braking process of a typical rail vehicle is modeled in
a discrete manner shown in Fig. 1. To simplify the problem,
it is assumed that the conversion from the kinetic energy to
the electric energy is 100%. In Fig. 1, the braking candidate
distance and speed are constrained by the forward and back-
ward calculation using the maximum braking rate. Each train
state is a combination of three variables: instant train speed v
and braking time t and instant distance d from the final state
shown in black circle in Fig. 1. Each grey round circle in Fig. 1
represents a group of train states with the same braking speed
and distance but different braking time. Other train state should
not have a zero speed or a speed exceeding the speed limit.
The braking time for each train state since the final train state
should not exceed the allowed braking time. If a train state is
able to switch to another, the braking rate between these two
states should be less than the maximum braking rate. In this
paper, the train is allowed to keep its speed when it switches
from one state to another, resulting a maximum acceleration
rate of 0 m/s2. If needed, the train can be allowed to re-motor
and increase its speed in the braking process.

The modeling and optimization procedure is divided into
the following three steps.

Step 1 Determine the braking candidate distance and speed.
The braking process is divided into different subdivisions
between the starting position and the ending position. The
position to divide the total braking distance is referred to
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Fig. 1. The braking candidate distance and speed.

as the candidate position and the speed on each candidate
position is referred to as the candidate speed. The speed at
each candidate position is constrained between the two braking
speed trajectories by backward and forward calculations using
the maximum braking rate. Both calculations should not
exceed the speed limit, if any, and lower than zero speed.

Step 2 Generate the train states. The braking trajectory
consists of a series of train state switches and is generated
using the following Lomonossoff’s equation in 1. A detailed
introduction on the state-switch calculations has been covered
in [23], [27].

M ′
dv

dt
= F − (A+Bv + Cv2)−Mg sin(α) (1)

where,
• F is the tractive effort or braking effort if applicable

within the maximum acceleration and deceleration rate;
• A, B and C are the Davis coefficients;
• M ′ is the effective mass including rotary allowance;
• M is the tare mass;
• g is the acceleration due to gravity;
• v is the instantaneous train speed;
• t is the instantaneous time; and
• α is the slope angle.
Between two train states with different speeds v1 and v2

and distances d1 and d2, where v2 > v1 and d2 > d1,
the braking rate abr is assumed to be constant and can be
calculated in (2).

abr =
v22 − v21

2(d2 − d1)
(2)

The calculation of the total electric braking energy between
every two train states will be further achieved in each minor
iterative step. In each minor step, the total braking effort
Ftb is calculated using the braking rate abr obtained in (2).
Assume that a train is with a speed at a minor distance of ∆D.
The total braking effort Ftb is a combination of the electrical
braking force Feb and the mechanical braking force Fmb. The
electrical braking regenerative energy Eeb in each minor step
is calculated in (3).
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Fig. 2. Schematic diagram of various braking efforts.

Eeb = Feb∆D (3)

Assume that Fmaxeb is the maximum available electrical
braking force at current speed v. The electric braking force
is represented by (4) and the total braking force is represented
by (5).

Feb = min(Fmaxeb , Ftb) (4)

Ftb = abr ∗M ′ (5)

In Fig. 2, a schematic diagram of baking efforts is shown.
The black solid line represents the maximum electric braking
effort; the blue dashed line stands for an instantaneous constant
braking effort imposed on the train during braking, the red
dotted line represents the maximum feasible electric braking
effort Feb and the gray patterned area indicates the electric
braking operation range.

Step 3 Construct a directed weighted graph G = (V,E) for
a shortest-part optimization. Using the method in the second
step, one is able to calculate the RBE and time usage while
a train is braking from one train state to another using the
method in Step 2. In a graph G = (V,E), V is the set
of vertices in a graph to represent the train speed state and
E is to represent the set of edges connection between the
states. The value for the RBE for braking between two states
is negative. Thus, the shortest path of series of edges with
minimum value between two states will represent the braking
trajectory in association with the maximum RBE. The detail of
the shortest path search algorithm will be covered in the next
section. It is worth mentioning that journey time constraint
will be imposed so that only the path within the demanded
journey time window will be regarded as valid.

III. THE BELLMAN-FORD ALGORITHM

The Bellman-Ford (BF) algorithm is commonly applied to
compute single source shortest paths in a weighted directed
graph [25], [26], [28]. Compared with Dijkstra’s algorithm
[29], BF is able to cope with graphs with negative edge
weights. The worst case performance for BF is O(|V | ∗ |E|)
where |V | and |E| are the numbers of vertices and edges. Each
vertex represents a train state and the distance between two

Train motion simulation  

Construction of the weighted and directed graph

Search for a set of train states with maximum RBE

Abort

Initialize

Fig. 3. Flow chart diagram for the proposed method using the Bellman-Ford
algorithm.

vertices represents the RBE generated when the train switches
from one state to another.

Before the illustration of BF, some definitions are made as
follows:

• Let i and j be any vertices in the vertex set V : i, j ∈ V ;
• Let d[i] represent the shortest distance from the source

for vertex i and it is set infinity for initialization;
• Let p[i] be the previous vertex for d[i]; p[i] = ∅ for the

source vertex;
• Let w be the weight matrix where w(i, j) is the edge for

vertices i and j representing the electric braking energy
for trains states switching from vertex i to j.

For any vertex i, if there exists another random vertex j,
through which i is able to achieve a shorter distance to the
initial vertex than its current shortest path, the shortest path
between j and the initial vertex will be replaced by the new
path involving i. This is referred to a relaxation process and the
RELAX function is used to perform this process. Note that the
RELAX function will be repeated for each vertex to ensure that
the distance for each vertex will be reduced to the minimum
as long as there are no negative cycles. Negative cycles are
eliminated by only allowing one-direction generation of train
braking states at Step 3.

The pseudo-code for the BELLMAN-FORD and RELAX
function is shown as follows. It is well known that BF

Algorithm 1 RELAX function
if w(i, j) + d[i] < d[j] then

d[j]← w(i, j) + d[i]
p[j]← i

end if

can become computationally infeasible if the search space
grows large. In this paper, the following strategies are adopted
to improve the computational efficiency. But nevertheless, a
tradeoff between the optimality and computation efficiency
should be maintained based on the system requirement.

• Parallel computation has been applied during the states
generation. For example, the information of the travelling
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Algorithm 2 BELLMAN-FORD function
for all i in V do . Initialisation

d[i]←∞ . Original distance from each vertex to the
source is infinity

p[i]← i . Previous vertex being itself
end for
for k := 1→ (|V | − 1) do

for all (i, j) in E do
RELAX(i, j, w, d, p)

end for
end for
for all (i, j) in E do . Identify the negative cycle in the
graph

if w(i, j) + d[i] < d[j] then
Return(FALSE)

else
· · ·

end if
end for

time and RBE between two train states can be obtained
in parallel.

• Heuristics can be applied to eliminate two identical states.
For example, if two train states with the same travelling
time from the initial state, and the same current speed and
distance, the one with the less RBE can be eliminated.

• The discretization of the state space can be applied. For
example, as the journey time difference in second is
insignificant, each states can be modeled with the unit
second.

IV. CASE STUDIES

Case studies for a typical suburban train under a practical
engineering scenario have been conducted. A suburban train
will brake from a nominal speed until it finally stops. The total
braking distance remains 1750 m in this paper. In addition
to BF, the constant-braking-rate (CBR) method will also be
applied. A random constant braking rate of 0.5632 m/s2 is
proposed based on a = 0.5 ∗ v2/s, where v is the maximum
train speed 44.4 m/s and s is the braking distance 1750 m.
Actually, the constant braking rate can be varied to generate
different braking curves within the braking distance. CBR is
implemented in a backward calculation using this constant
braking rate across the entire braking distance. The train will
take a cruising operation when a speed limit is imposed. The
initial speed and total braking time will then be determined
by CBR and will also be used for BF. Using this backward
calculation, the initial speed and proposed journey time for
both methods obtained as 41.8 m/s and 80.86 s respectively.
Noth that other constraints such as the speed limits and
gradients are imposed as well. Finally, the results achieved
by CBR will be compared to the ones achieved by BF.

Fig. 4 shows the braking effort and resistance effort charac-
teristics for a typical suburban train [30]. The Davis equation
[31] is considered to account for the resistive force imposed
on the train. The relative altitude profile is shown in Fig. 5.
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Fig. 4. Braking effort characteristics for a typical suburban train.
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Fig. 5. Altitude profile for case 1.

TABLE I
TRAIN VEHICLE MODELING PARAMETERS

M (t) M ′(t) Pmax(kW ) vmax(km/h) amaxbr (ms−2)

170 178 3,681 160 1.2

All other essential parameters are listed in Tables I and II.
Note that M and M ′ are the train mass and train effective mass
in tonnes respectively. Pmax is the maximum train generation
power. vmax is the maximum allowed train speed. amaxbr is the
maximum train braking rate. In Table II, the minimum distance
interval is the minimum distance between two train states.
The maximum distance interval will be adopted to ensure that
the gradients and speed limits remain the same within one
distance interval. The minor distance interval is the iterative
simulation step to calculate the energy consumption between
two train states. The minimum speed interval and the time
interval are the minimum difference between the speed and
time of every two states with two of the elements being the
same. For example, if both the distance and speed are the same
for two train states, the time difference between them should
not be less than the minimum time interval.

After the electric braking energy is calculated using the
single train simulator, a weighted connected graph will be
created and the implementation of BF is applied using the
MatlabSGL library in MATLAB [32].

The total RBE achieved by CBR and BF are denoted by
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TABLE II
GRAPH MODELING PARAMETERS

Minimum distance interval (m) 100
Maximum distance interval (m) 200
Minor distance interval(m) 1
Minimum speed interval (m/s) 0.1
Minimum time interval (s) 1

TABLE III
SIMULATION RESULTS

TCBR
(s)

TBF
(s)

EebCBR
(kWh)

EebBF
(kWh)

Increment
Rate(%)

80.86 82.48 27.46 32.19 17.23

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

20

25

30

35

40

45

Distance (m)

S
pe

ed
 (

m
/s

)

Braking speed trajectories achieved by CBR and BF

 

 

CBR
BF
Speed limit

Fig. 6. Comparison of the braking speed trajectories by CBR and BF.

EebCBR and EebBF respectively. The total braking time by these
two methods are denoted by TCBR and TBF . BF searches a
braking speed trajectory with various braking rates so that the
RBE can be maximized within the search space.

Table III summarizes the simulation results. A comparison
of the braking speed trajectories achieved by CBR and BF is
shown in Fig. 6. The electric braking effort (EBE) and total
braking effort (TBE) by both methods are demonstrated in Fig.
7.

In Table III, it is found that using BF, an increase of RBE
can be significantly achieved compared to the one by CBR. A
slight deviation on the journey time for BF can be observed.
In Fig. 7, the EBE in solid lines and the TBE in dashed lines
are shown for both braking trajectories achieved by BF and
CBR.

It has been demonstrated that BF takes advantage by incor-
porating the nonlinear constraints into the states generation and
is able to solve the RBE-maximization problem in a relatively
convenient way. As will be demonstrated in Section V, the
state discretization prevents BF from obtaining a globally
optimal solution but an increase of train states can be realized
by reducing the minimum distance between every two train
states and will lead to an increase of the achieved maximum
RBE and a longer computation time.
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Fig. 7. Comparison of the braking effort by CBR and BF.

V. VERIFICATION OF THE PROPOSED METHOD

In this section a simplified case scenario where a train is
braking on a level track with only non-positive braking forces
applied will be discussed. With a reasonable approximation,
Linear Programming (LP) can achieve an optimal braking
trajectory with the maximum RBE. The results achieved by
LP will be used to verify our proposed method. A RBE-
maximization model is proposed and solved by LP. The details
of the modeling are covered in V-A.

A. Linear programming modeling

As shown in Appendix A, it can be proved that if the initial
train speed is either too high or too low, an optimal solution
for the RBE-maximization problem in a simplified scenario
will only include part or all of the following three operations:

• maximum-braking operation;
• maximum-electric-braking operation;
• coasting operation.

Since the resistance exists along the entire braking oper-
ation, the optimal train braking speed trajectory will keep
decreasing until a full stop. Assume that v1, v2, . . . , vN are
a set of speeds on the reducing braking speed trajectory of a
train with vN being zero and v1 being the initial speed before
braking. N is a sufficiently large number and represents for
the total number of the intermittent candidate speeds. N is
large enough to ensure the speed change between two adjacent
candidate speeds is so small that the average speed calculated
based on these two speeds will be able to closely approximate
the actual average speed with a satisfactory precision. A
schematic diagram for the discretized braking speed versus
distance is shown in Fig. 8.

It is assumed that the difference between two adjacent
braking speeds is constant. Therefore, as long as the initial
and the final speed are known, all the intermittent speeds
vi i = 2, 3, . . . , N − 1 will be known and can be calculated
using (6).

vi = v1 − (i− 1)
vN − v1
N − 1

i = 2, 3, . . . , N − 1 (6)
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Fig. 8. Braking speeds vs. distance in for the LP application.

The average speed vai between vi and vi+1 is calculated by
(7).

vai = (vi + vi+1)/2 i = 1, 2, . . . , N − 1 (7)

The average resistance between vi and vi+1 is calculated by
(8).

F rei = A+Bvai + C(vai )2 i = 1, 2, . . . , N − 1 (8)

where, A, B and C are the Davis coefficients.
The average maximum electric braking effort between vi

and vi+1, denoted by F e,maxi can be obtained by linearly
incorporating the braking characteristics shown in Fig. 4 using
vai .

The distance between vi and vi+1 is denoted by di, i =
1, 2, 3, . . . , N − 1. The total distance constraints should be
met as defined in (9).

D =

N−1∑
i=1

di (9)

where D is the total braking distance.
The average deceleration rate will be defined as:

abri =
v2i+1 − v2i

2di
(10)

abri should be less than the maximum braking rate amaxbr as
shown in Table I. Hence, (11) can be derived.

v2i+1 − v2i
2di

≤ amaxbr (11)

It consequently yields:

di ≥
v2i+1 − v2i

2amaxbr

(12)

The RBE at di, denoted by Eebi , between vi and vi+1 should
meet the following two linear constraints.

Eebi ≤ (M ′abri − F rei )di

≤M ′
v2i+1 − v2i

2
− (A+Bvai + C(vai )2)di (13)

Eebi ≤ F
e,max
i di (14)
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Fig. 9. Comparison of the speed trajectories achieved by BF and LP with an
initial speed of 44.4 m/s.

TABLE IV
RESULTS COMPARISON BETWEEN BF AND LP

EebBF (kWh) EebLP (kWh)

v1 = 35.0 m/s 27.78 28.85
v1 = 44.4 m/s 37.60 38.38

Both (13) and (14) ensure similar constraints set by (4).
The electric braking effort should be less than the maximum
electric braking effort and the braking effort defined by the
total braking rate and average resistance.

LP is applied to solve the model defined by the above
mentioned constraints. In this paper, IBM ILOG CPLEX [33]
has been applied to solve this optimization model and the
results will be shown and discussed in Section V-B.

B. Results and discussions

In this section, the optimization results achieved by LP and
BF for a simplified scenario will be compared and discussed.
In order to ensure that the results achieved by LP are close
enough to the optimal solution, the difference between two
adjacent candidate speeds is set as “0.1 m/s” and it is found
that a further reduction of the difference does not further
improve the result.

Two braking scenarios with initial braking speeds of
44.4 m/s and 35.0 m/s are proposed. Both LP and BF are
applied to search for the braking trajectory with a maximum
RBE in their search space. Fig. 9 and Fig. 10 demonstrate the
optimization results with an initial braking speed of 44.4 m/s.
Fig. 11 and Fig. 12 demonstrate the optimization results with
an initial braking speed of 35.0 m/s.

Let EebBF and EebLP denote the RBE achieved by BF and LP
respectively. Let v1 denote the initial speed. The results are
summarised in Table IV. In Fig. 9 and Fig. 11, it is observed
that BF is able to achieve a braking trajectory close to the
one generated by LP. With regards to the braking effort, BF is
only able to control the braking rate in a discretized manner
producing a discrete braking effort profile. In Table IV, it is
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Fig. 10. Comparison of the braking efforts achieved by BF and LP with an
initial speed of 44.4 m/s.
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Fig. 11. Comparison of the speed trajectories achieved by BF and LP with
an initial speed of 35.0 m/s.
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Fig. 12. Comparison of the braking efforts achieved by BF and LP with an
initial speed of 35.0 m/s.

0 50 100 150 200 250 300 350 400 450 500
34

34.5

35

35.5

36

36.5

37

37.5

38

38.5

Minimum distance between two train states (m)

A
ch

ie
ve

d 
R

B
E

 (k
W

h)

Comparison of RBE achieaved by different methods

 

 

RBE achieved by BF
RBE achieved by LP
RBE achieved by CBR

Fig. 13. Comparison of RBE achieved by BF, LP and CBR with an initial
speed of 44.4 m/s.

noted that BF is unable to achieve a solution as good as the
one achieved by LP due to discretization.

In this paper, the minimum distance between two train
states has been varied to change the total generated train
states. A shorter minimum distance leads to more train states
being generated. Generally, more train states will lead to more
RBE and the achieved solution will gradually approach a
global optimal solution by searching all the possible train
states. However, due to “the curse of dimensionality” the
train states will increase so greatly that optimization by BF
will be practically impossible due to the limited computation
capability. A sensitivity analysis has been conducted between
the RBE achieved and the minimum distance between two
train states for the case with an initial speed of 44.4 m/s.
For comparison reasons, the RBE achieved by both LP and
CBR are also demonstrated. The constant braking rate can be
simply obtained from the total braking distance and the initial
braking speed. The results are shown in Fig. 13.

In Fig. 13, it is found that an increase of the minimum
distance between every two train states will lead to less RBE.
A minimum distance of 50 m between two train states will
generate a total RBE of 37.60 kWh which is also shown in
Table IV and a higher minimum distance will reduce the train
states and RBE achieved. Compared to the results by CBR, it
is noted that BF is able to achieve a significant increase on
the RBE in this simplified case. It is observed that BF is only
able to achieve a sub-optimal solution due to discretization
of the train states, but a significant increase of RBE can be
achieved compared to the one achieved by CBR with desirable
simplicity and robustness. Note that LP cannot be applied
in nonlinear cases, the advantages of BF becomes significant
when a train is required to brake along a distance with various
speed limits and gradients.

VI. CONCLUSIONS

It is demonstrated in this paper that the RBE can be
significantly increased for the searched train braking trajectory
compared to the conventional braking trajectory using a nom-
inal constant braking rate. A shortest path search method, i.e.
the Bellman-Ford (BF) algorithm has been proposed to search
for the braking trajectory to increase the RBE generated. BF
has been applied in a case scenario with nonlinear constraints,
such as speed limits, gradients and braking time constraints.
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The optimization results demonstrate that a significant increase
can be achieved compared to the one by a constant braking
rate. The solutions by BF has also been verified by LP in
a simplified case scenario. The obtained braking trajectory
is suitable to provide a guidance during braking operation.
Future works will be to develop an algorithm to improve
the computation efficiency of the algorithm for the RBE
optimization problem. Conclusions of this paper are drawn
as follows:

• In a discretized train states space, BF is able to search
for the optimal braking trajectory with the maximum RBE
under different constraints with a high level of robustness.
A good tradeoff between the computation efficiency and
solution quality should be maintained.

• In a case scenario with speed limits, non-zero gradients
and a narrow allowable braking time window, BF is able
to locate a train braking trajectory with a significant
increase in RBE compared to the one achieved by CBR.

• In a simplified case scenario, an optimal solution can be
achieved by LP and has been used as verification for BF.
The RBE achieved by BF is slightly less than the one
by LP. However, an increase of RBE can be obtained
compared to the one achieved by CBR. The proposed
method using BF takes advantage on its easiness and
robustness on the application in a case scenario with
nonlinear constraints.

APPENDIX A
OPTIMALITY ANALYSIS USING PONTRIYAGIN’S MAXIMUM

PRINCIPLE

Similar to Section V, no speed limits and journey time
constraints are considered for a train on a zero-gradient track in
this section. Only braking force can be applied in mechanical
or electrical braking. This implies that the speed of train will
be at least decreased by resistance. An optimality analysis for
a braking trajectory to achieve the maximum braking energy is
conducted using the Pontriyagin’s Maximum Principle. Similar
studies have been proposed for the optimisation of the entire
train trajectory in papers [18]–[21]. The motion of train during
braking is modeled by (15) and (16).

dt

ds
=

1

v
(15)

M ′v
dv

ds
= feb + fmb − fr (16)

where t is the time; s is the distance; v is the train speed
during braking; feb, fmb and fr are the electric braking force,
mechanical braking force and resistance respectively. Since
zero gradient is considered, the force due to the gravity is
omitted. feb is the electric braking force between zero and the
maximum negative braking force fn−maxeb as it is assumed
that no motoring is allowed during this simplified braking
process with a speed which keeps decreasing by resistance
and possible braking force. fn−maxeb depends on the current
speed. fmb is a non-positive mechanical braking force limited
by the maximum braking rate. M ′ is the train effective mass
accounting for the rotary inertia. fr is the force depending on

the current speed, specifically it can be presented by (17).

fr(v) = A+Bv + Cv2 (17)

where A, B and C are the Davis coefficients.
The instantaneous RBE Eeb recovered is represented by

(18).
dEeb
ds

= −feb (18)

where the braking operation with a negative feb increases the
RBE.

Assume that the total braking distance is S with an initial
speed of v1. The boundary conditions are shown as (19).

t(0) = 0 t(S) <∞
v(0) = v1 v(S) = 0 (19)

Based on the Pontriyagin’s Maximum Principle (PMP), the
Hamiltonian is defined as:

H =
dEeb
ds

+ λ1
dv

ds
+ λ2

dt

ds

= −feb +
λ1
M ′v

(feb + fmb − fr) +
λ2
v

= (
λ1
M ′v

− 1)feb +
λ1
M ′v

fmb +
λ1
M ′v

(−fr) +
λ2
v

(20)

feb and fm are the two control inputs. Let µ denote the term
λ1

mv . Based on PMP, in order to maximize the Hamiltonian,
the following observations can be made.

• If µ > 1, both feb and fmb should be zero. This
corresponds to a coasting operation.

• If µ ∈ (0, 1), feb should be as negative as possible
while fmb should be zero. feb = fn−maxeb if the resulted
braking rate does not exceed the maximum braking rate.
This operation is referred as the “full-electric-braking
operation”.

• If µ < 0, both feb and fmb should be as negative as
possible. feb should increase first. The maximum braking
rate constraints should be met. This operation is referred
as the “full-braking operation”.

• If µ = 0 or µ = 1, a singular mode of train control will
result.

Two adjoint equations are as follows.

dλ1
ds

= −∂H
∂v

(21)

dλ2
ds

= −∂H
∂t

= 0 (22)

v is a variable which depends on s and together with (21),
(15) and (16) we derive:

dµ

ds
=

1

M ′v3
(λ2 + µv2f ′r(v)) (23)

where f ′r(v) is the derivative of (17), namely f ′r(v) = B +
2Cv.

In a singular operation mode, µ = 1 or µ = 0, so dµ
ds = 0.

Given that λ2 is constant based on (22), it can be derived that:

− V 2f ′r(V ) = λ2 (24)

where V is a constant speed during both singular modes.
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Infeasible range of V

Fig. 14. The feasible range of the speed during a singular mode.

The non-zero resistance defined by (17) is always against the
motion of train and only non-positive electric or mechanical
braking forces can be imposed. In order to keep a constant
speed, the speed should be less than zero, so that the negative
braking force can be equal to the resistance but in an opposite
direction. In addition, V cannot be between 0 and −BC because
the resistance cannot be less than A. It also means that the
singular mode due to µ = 0 is infeasible. Within the proposed
modeling context, if µ = 0, V = 0 and the train is unable to
keep a zero speed with a constant negative resistance A and
non-positive braking force. Therefore, f ′r(V ) < −B <= 0
for V < −BC . A schematic diagram is shown in Fig. 14 for
illustration of the feasible range of the speed during a singular
mode due to µ = 1.

A variable ξ is defined as follows.

ξ =
−V 2f ′r(V )

v2f ′r(v)
(25)

It is noted that ξ < 0 since f ′r(V ) < 0 and f ′r(v) > 0. By
rearranging ((23)) and it derives:

dµ

ds
=

1

M ′v3
(λ2 + µv2f ′r(v))

= v2f ′r(v)
1

M ′v3
(µ+

λ2
v2f ′r(v)

)

=
f ′r(v)

vM ′
(µ− ξ) (26)

It is noted that f ′
r(v)
vM ′ > 0 given that v > 0, f ′r(v) > 0 and

M ′ > 0. There are 4 possible cases with regard to the initial
value of µ.

Case 1 If initially µ ∈ (1,∞), µ > ξ and dµ
ds > 0. µ will

keep increasing and the train will keep coasting until the end.
Case 2 If initially µ ∈ (0, 1), µ > ξ and dµ

ds > 0. As a result,
the full-electric-braking operation should apply. dµ

ds > 0, µ
will keep increasing to be more than 1 and thus a coasting
operation will be applied until the end.

Case 3 If initially µ ∈ (ξ, 0), µ > ξ and the full-braking
operation should be applied. µ will also keep increasing and
operations in Case 2 and Case 1 will apply subsequently.

Case 4 If initially µ ∈ (−∞, ξ), µ < ξ and the operations
in Case 3 will apply. However, in this case, dµ

ds < 0, µ will
keep decreasing and the full-braking operation always applies.

Hence, the train will keep braking with maximum braking
force until the end.

It is noted that Case 1 and Case 4 cannot occur in most
cases. Only coasting and full-braking operation will hardly
achieve a desirable braking trajectory. Without considering the
journey time and speed limits, the optimal braking control
on a level track will be with an initial µ ∈ (ξ, 0) or
µ ∈ (0, 1). Therefore, an optimal braking operation involves
the full-braking operation, the full-electric-braking operation
and a coasting operation subsequently. These three opera-
tions may not necessarily co-exist but the operation order
will remain the same i.e. a coasting operation comes after
the full-electric-braking operation and the full-electric-braking
operation comes after the full-braking operation. If a train
has a very high initial speed and cannot brake using the full-
braking operation, no feasible solution exists. Similarly, if a
train has a very low speed and cannot maintain a positive speed
before reaching the next station, no feasible solution exists as
well. In such a case, motoring operations will be necessary to
achieve a feasible braking trajectory.
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