IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 3, NO. 1, JAN. 2013 1

Single Train Trajectory Optimisation
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Abstract—An energy-efficient train trajectory describ-
ing the motion of a single train can be used as an input to
a driver guidance system or to an automatic train control
system. The solution for the best trajectory is subject to
certain operational, geographic and physical constraints.
There are two types of strategies commonly applied to
obtain the energy-efficient trajectory. One is to allow the
train to coast, thus using its available time margin to save
energy. The other one is to control the speed dynamically
while maintaining required journey time. This paper
proposes a distance based train trajectory searching model,
upon which three optimisation algorithms are applied to
search for the optimum train speed trajectory. Instead
of searching for a detailed complicated control input for
the train traction system, this model tries to obtain the
speed level at each preset position along the journey. Three
commonly adopted algorithms are extensively studied in
a comparative style. It is found that the Ant Colony
Algorithm (ACO) obtains better balance between stability
and the quality of the results, in comparison to the other
algorithms, Dynamic Programming (DP) and Genetic Al-
gorithm (GA). For off-line applications, the additional
computational effort required by dynamic programming
is outweighed by the quality of the solution.

Index Terms—energy saving strategy, single train tra-
jectory, dynamic programming, ant colony optimisation,
rail traction systems

I. INTRODUCTION

Driver guidance systems [|1] or Automatic Train
Operation (ATO) [2] systems are able to take
advantage of pre-computed train speed trajecto-
ries. Train trajectory optimisation has already been
widely studied using various algorithms. Generally,
the train running trajectory optimisation can be
categorized into two types: coasting control and
general control. The coasting control optimisation
searches for the optimum train trajectory by varying
the coasting margin to use up the allowable time
margin. A Genetic Algorithm (GA) has been ap-
plied in the search for the coasting points where
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the number of coasting point is predetermined [3].
The results demonstrate promising performance of
coasting control for the tradeoff between the journey
time and energy consumption. In work reported
in [4], a GA was also applied to search for the
coasting points. The number of coasting points has
been dynamically allocated into the chromosomes
and this will enhance its practical application. In
work reported in [5], some of the classic search
methods, i.e. golden search methods are studied in
a simple single coasting point case supplementing
the study of GA. Artificial Neural Networks (ANN)
and GA have been applied for the optimisation of
coasting points for trains [6]. Rather than search
for the coasting point, the work demonstrated in [7]]
targets on the acceleration rate, the braking rate and
the re-motoring speed.

The general control optimisation derives the op-
timum train trajectory by applying a variety of
sequential control inputs, i.e. acceleration, coasting,
cruising and deceleration. This mean of optimisation
can be practically implemented in a straightforward
manner because the control inputs are echoed by the
practical train operations. Optimum control theory
is among the widely applied techniques to obtain
the optimum train trajectory. The objective is to op-
erate a train and minimize the energy consumption
subject to time and other physical constraints. The
solution of the problem is obtained through some
linear approximation or some empirical extensions
[8]. Pontryagin Maximum Principle (PMP) is the
common method used to compute the solution in
cases where the input signal are either continuous
or discrete [9]. Because the methods using optimal
control theories can be integrated with the fast
response characteristics, they can be applied to de-
velop an online optimum control systems [§]], [10].
Dynamic Programming (DP) has been applied to
search for the optimum trajectory with the minimum
energy cost [11]-[13]]. In work presented in [14],
multi-population genetic algorithms together with
the heuristic annealing selection is applied to an
urban railway vehicle. It is argued that a multiple
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population search improves the convergence rate
and evolution stability.

However, it is not possible to obtain the analytical
control input due to the non-linear characteristic of
the rail system. Some reasonable approximations
should be taken in order to search for the optimum
control signal and resultant trajectories. For exam-
ple, in the work presented in [8], the energy cost
of the journey is assumed to be rise linearly with
the journey time which may become unpractical in
practice. Some of solutions in partial accelerating
and braking control cannot be guaranteed to be
optimal due to the singular characteristic of the train
trajectory optimisation [15], [16]. In addition, the
optimal solution is not guaranteed and convergence
speed is uncertain in general in a numerical method
[L7], [18].

In an attempt to avoid the non-linear complexity
arising from the optimal control theory, this paper
proposes a new graphic model based on which more
general optimisation algorithms can be applied and
studied comparatively. Two heuristic algorithms and
dynamic programming are applied to search for the
train speed trajectory. The practical constraints are
taken into account including the timetable, traction
equipments characteristics, train operation speed
limits, and gradients.

The study proposed in this paper is focused
on the optimal speed trajectory of a single train
with various scheduled journey time. The effects
on the optimal trajectory imposed by other trains
in the railway network are out of the scope of
this study. However, the searching algorithms are
capable of accommodating situations where service
disturbance is unexpectedly imposed as long as the
initial and final train speed and time is known
[19]]. Broad readership can benefit from this paper
in the application of driving guidance system and
other dynamic process optimisation such as network
managements, power distribution, shipping routes
etc.

The content of this paper is organised as follows.
In (I} the modeling procedure for the distance based
speed searching space of optimum running trajec-
tory will be introduced. From [Tl to[V] three varieties
of algorithms are discussed based on the searching
space model. In [V, the optimized train trajectory
achieved from three algorithms will be discussed
comparatively. Finally a conclusion will be drawn

in [VII
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Fig. 1. Journey altitude and speed limit profile.

II. MODELING CONTEXT
A. Vehicle motion modeling

The movement of a railway vehicle is determined
by a set of physical constraints such as journey
profile, speed limit and other vehicle related factors.
The general equation of train motion, known as
Lomonossoff’s equation, can be written as follows:

,d%s ds d?s )
M w2 F—(A—FBE%—C'@)—Mgsm(Oz) (1)
where:

o [ is the tractive effort or braking effort if
applicable within the adhesion limit.

e« A, B and C are Davis constants;

« M’ is the effective mass including rotary al-
lowance;

e M is the tare mass;

« t is the dependant element time;

o s is the instant distance of train;

« « is the slope angle.

A single train motion simulator has been applied
to calculate the energy consumption and time cost
of train movements. The energy consumption is
calculated by tractive effort times distance. The cal-
culation has considered the train characteristic, such
as load and motor characteristic, route information
including speed profile and gradient profile. Further
details of train energy and time calculation can be
found in various references [20]-[22].

The vehicle traction system prototype in this
study is based on the British Rail “Voyager” type.
The information about the load and motor charac-
teristic is shown in Fig. 2] and Table [] while the
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TABLE 1
KEY PARAMETERS FOR SINGLE TRAIN MOTION SIMULATOR

Davis coefficients

Tare mass Maximum power Maximum A (kN) B (é‘l—ljs C (%)
(tonnes) kW) tractive effort
(kN)
213.19 1568 146.8 3.73 0.0829 0.0043
TABLE II

Specific traction, resistance and tractive effort
available for acceleration curve

T T

—specific traction
~=resistance
tractive effort available for accleration

Tractive Effort (kN)

40 50 60

Fig. 2. Maximum tractive effort, resistance and acceleration curve
of Voyager type vehicle
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searching

speed and gradient profiles are shown in Fig. [I}

B. Objective function and problem formulation

This paper adopts the distance based modeling
to simulate the train motion and traction power
consumption. The motion of train is calculated iter-
atively based on distance. The objective of the train
trajectory optimisation is to search for the speed

DEFINITION OF PENALTY COST IN THREE ALGORITHMS

10} GA and ACO DP
0<¢<0.01 0 0
0.01 < ¢ <0.1 E 00
0.1 <9 <0.2 30-¢-F %)

02<¢ 100-¢- FE %)

for each position along the journey and minimise
the energy consumption subject to the punctuality
requirement. The objective function to be minimized
is defined in

Jtra:E(UhU?v"' 7vn)+P (2)

where E is the energy consumption for the pro-
posed journey trajectory defined by a set of can-
didate speed vy, vs,--- , v, at the preset positions,
T'scheq 18 the scheduled journey time and 7, 1s the
time cost for searched trajectory. P is the penalty
cost related to the absolute difference ratio ¢ defined
as ¢ = [Leetet=Turanl The definition of P is listed in
Table o

The term “preset position” is used to describe the
position at which the speed of vehicle need to be
determined as shown in Fig. 3| The preset positions
are classified into the following three types.

« Positions whose distance values are the multi-
ples of the proposed distance interval s;,;, €.g.
S, and S; preset positions in Fig. [3]

« Positions at which the speed limits are changed,
e.g. S5 and S; preset positions in Fig.

o Positions for the beginning and the end of
journey, e.g. S, and Sy, preset positions in Fig.

Bl

For each preset position, the possible speed
should meet the following constraints.
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o At each preset position the maximum speed is
determined by the “flat out” running of a train,
during which the train runs as fast as possible
without violating the speed limit.

« Between two preset positions, the calculation
of the train trajectory is to use a minor distance
step to calculate the actual energy consumption
and time cost.

The optimisation procedure is to search a set of
candidate speed at each preset positions along the
journey. Typical combinatorial optimisation algo-
rithms can therefore be applied. In order to gen-
eralise the optimisation procedure, a construction
graph covered in next section is built to provide
necessary information for different combinatorial
optimisation algorithms.

C. Construction of graph

A complete weighted and directed graph
G = (N, A) is constructed with N being the set
of N nodes which are the train state including the
candidate speed and distance and “A” being the set
of arcs connection between the nodes. The energy
consumption and time cost for each arc is calculated
using a single train simulator as discussed in details
in [20], [22].

Some remarks are made as follows:

o Let E'C' denote the sparse matrix to store the
energy consumption for train switch from one
node to the other. EC(i,j) are set zero for
unfeasible switch or braking switch between
node ¢ and j.

o Let T'C denote the sparse matrix to store the
time consumption when the train is switching
between two nodes. Otherwise, zero will be
stored.

e Let ECH denote the sparse matrix to store
the heuristic energy consumption of every two
nodes. EC'H(i,j) are set as zero for unfea-
sible state switch between node ¢ and j, and
|1/EC(i,7)| for connected nodes otherwise.

o Let TC'H denote the sparse matrix to store the
heuristic time consumption between every two
nodes. TC'H(i,j) are set as zero for unfea-
sible state switch between node ¢ and j, and
1/TC(i, j) for connected nodes otherwise.

e Let LNK denote the Ilinkage informa-
tion sparse matrix. The linkage information

LNK(i,7) is to indicate feasibility and desir-
ability of switch between these two nodes.

III. ANT COLONY OPTIMISATION

A. Introduction

ACO is inspired by the foraging behavior of the
ant colony [23]. In ACO, a set of artificial ants com-
municate and cooperate indirectly by pheromone to
find a solution to a discrete optimisation problem.
Each artificial ant, as an independent agent, is
allocated with the computational resources by which
it is able to leave the pheromone when necessary
to communicate with the other ants. The ant with
the good solution tends to leave more pheromone
along their routes to direct the other ant. Using this
“learning enhancement” style algorithm, the route
with better solution will finally attract more ants
to follow and finally lead to a convergence of the
optimisation process. In [24]], Max-Min ant system,
one type of ACO algorithm, is applied to optimise
the block layout for energy efficiency of mass rapid
transit system.

B. Solution construction

The original pheromone trail imposed for every
two connectable nodes is a constant ¢;,, as shown
in Alg. [1]

At each construction step, ant “k” choose the next
speed at next preset position based on a random pro-
portional rule [23]. Assume that, the ant is currently
at the speed index ¢ and the possibility of speed
index j being selected for next preset position is
defined as follows:

- [LNK (i, )|*[ECH (i, )]’ [TCH i, §)]
Y Y e [LNK (i, n)|*[ECH i, n)]ﬁ[TCH(i(,;;)]V

where LN K (i,7), ECH(i,j) and TCH (i, j) are
defined in «, (3, v are the parameters to
determine the relative influence of the pheromone
trail and the heuristic information, and Q¥ are the
feasible neighborhood of ant “k” being at node i. If
the train is running not quickly enough v will be set
higher value to attract ants to choose less time cost
switch. If the train is running too fast, 5 will be set
higher value to attract ant to choose more energy-
efficient node switch. o remains constant in this
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case. More details on determining the parameters
can be found in [25].

Each artificial ant is able to decide which is the
next indexed speed for next preset position and fi-
nally a resultant journey can be constructed showing
the speed of train at each preset positions. The
quality of the solution will be evaluated using the
objective function (2)) and the pheromone trail will
then be updated based each constructed solution’s
quality. One of the key functions in the update
procedure is to reinforce the better solution through
imposing more pheromone trail.

C. Pheromone update and termination condition

The pheromone trail matrix is updated using the
output of (3). A generalised update procedure is
adopted for a group of artificial ants.

Use n, to denote the number of ants in a group.
Let n, being the number of preset positions. Use
SOL to denote the constructed solution matrix in
which each row element is a trajectory solution. A
element in a row is the index of each node at each
preset positions. The number of elements in each
row equals to n,. Use EV AL to denote the one
dimension matrix to store the evaluation function
output for each row of constructed solutions. Let
UPD to denote the update vector to update the
pheromone trail.

The update procedure can be divided into two
parts. The first part is illustrated in the pseudo-code
shown in Alg. [1]

Algorithm 1 ACO part I: obtain the update vector
UPD for each constructed solution in SOL
Require: eval,,;, + min(EV AL)
for : =1 to n, do
eval = EVAL(i) — eval
UPD(i) =2 ¢jn, - exp(—eval)
end for

Note that main is function which is to obtain the
minimum element from its input vector. exp is the
exponential function. The second part is illustrated
in the pseudo-code shown in Algorithm 2]

The best solution searched so far sol,s; will be
stored and updated by the new solution if lower
evaluation function output can be achieved.

Termination condition is set by two criterions.
Firstly, the number of groups of ants exceeds the

Algorithm 2 ACO part II: update the pheromone
trail matrix LN K using UPD and SOI
LNK(ri,¢;) < (1 —co)LNK(r;, ¢;)
for : = 1 to n, do
for j =1ton,—1do
LNK((ri,¢;) < LNK(ri,¢;) + UPD(7)
end for
end for

maximum allowable number. Secondly, the solyss
keeps unchanged for a selected number of iterations.

IV. GENETIC ALGORITHM
A. Introduction

Genetic Algorithm (GA) as a population based
optimisation does not require gradient information
of the objective function and only use the output of
the function to guide the search for better solution.
As mentioned in the introduction section [I, GA has
been reported as the successful candidate algorithm
in various train running trajectory searching applica-
tion and the simulation results shows its robustness
in this area [3], [4]], [7], [14]. In this section, the
GA will be used to search for the characterised
speed at each preset position using the modeled
strings i.e. genotypes. Each strings is modeled as
a characterised signal for current speed jump.

B. Genotype generation

In order to apply the GA, two important steps
should be implemented.
« Generation of the population of strings (geno-
types).
o Creation of fitness function to distinguish the
better strings.

Notice that for each candidate speed at each
preset position, the speeds in the neighborhood have
a range. Various characterised operation can be
identified through the speed switch.

At each section between two adjacent preset po-
sitions, a control index number is allocated. Assume
that the speed at the former position is v; and that
v; is the speed at the latter one. It is assumed
that v; € [Umin, Umaz] Where v, and vy, are
the minimum and maximum possible speed level



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 3, NO. 1, JAN. 2013 6

TABLE III
NEXT SPEED SELECTION BASED ON THE CHARACTERISED
CONTROL INDEX NUMBER

Control index i, Next speed selected

0 Vee OF U, Whichever exists
I~ 6 szn + (Vmax - szn) : icgl
7 Vewr if feasible
S1 8283 ,SN-2,
G1:1:1:30¢ 1Qob
S1 8283 ‘ SN2,
G2253 . 657 | S18283 SN2 SN
: : 111130 600
i i
S1 8283 ) SN-2, | |
Gu 253 - - - 165557 : :
ea ! Final best
Initial population ' operation ' solution

Fig. 4. Schematic Genetic Algorithm optimisation of train running
trajectory. Given a string of control index, a trajectory solution is
derived and it can be evaluated using the objective function as a
fitness function for GA optimisation.

of v;. 1,7 are the unique index number for both
speeds. Let v.. denote such speed that switches
from v; in a most energy-efficient operation with
ECH(i,j) # oo and let v, denote such v, for a
coasting operation with ECH (i, j) = oc.

For the control index number of “0”, the most
energy-efficient states switch will be selected. For
the control index of “1” to “7” , six speeds in
the range of [Viuin, Vinaz] Will be selected using
the methods shown in Table [IIIL The control index
number of “7” is the cruising operation of vehicle
if the speed is allowed to be kept in the next preset
position.

Assume that there is “M” strings in the initial
population, “N” preset positions along the journey,
the schematic GA optimisation procedure is shown

in Fig. {4

V. DYNAMIC PROGRAMMING
A. Introduction

Dynamic programming [26]] is a powerful tool to
solve a problem which can be divided into various
sub-stages. In our case, the trajectory searching can
naturally be divided into sub-intervals of distance.

Vehicle state consists
of distance, speed,
energy and time

Distance 4 consumed so far
Control index
number
___________________ -
e
e
- ~
-~ Ve
Ve
e
e
e
o T 7
Speed
Time
Fig. 5. States generation procedure in the Dynamic Programming

algorithm

B. Optimisation process

Let us make the following definition first.

Vehicle state ¢ consists of four basic physical
elements: vehicle distance s, vehicle speed v, used
journey time ¢ and used energy consumption since
the vehicle sets off from the initial state where s = 0
and v = 0.

Vehicle state can be expressed in an array form

¢ =[s,v,t,¢€] “4)

Let ¢, denote the initial vehicle state and obvi-
ously the following equation should hold.

(bo - [507U07t0760] = [0707070] (5)

According to the hypothesis, each vehicle state
must have one of the preset positions as its instant
distance.

The Dynamic Programming is proceeded forward
iteratively shown in Fig.[5] All the vehicle states are
developed from the initial one which is the original
point in this graph. For the first step, the states
will be created from the initial state using the index
control signal mentioned in Index control signal
for cruising operation is not available for first step.
One of the examples for the second step is also
presented which should be applied for all the other
created states from the initial state.

After the initial state has been created, 2 opera-
tions should be performed iteratively.

State generation FEach of the states should be
used to generate next state unless the preset position
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in the current state is equal to the final preset posi-
tion. Take the initial state as an example. According
the philosophy of the characterised control index,
assume the current control index is u, the following
can be derived.

Sy = 59 6)
Vo =5 vy (7

where s; will be the preset position right after s,,
while v; is determined using the method shown in
The time and energy cost due to the distance
and speed switch can be found in the sparse matrix
TC and EC. Assume the time cost is ¢. and energy
cost is e,.

t1:t0+tc

€1 =€+ €

®)
€))

New state s; is thereafter produced based on its
parent state s,. Each of the newly generated states is
able to remember its parent state using the indexing
method.

Elimination of duplicate states It is impor-
tant that each of the states is accompanied with
minimum energy caused so far since the state s,.
Duplicated state elimination occurs any time there
is two states with identical d, ¢t and v. The state with
more energy cost will be therefore eliminated.

To reduce the actual number of generated states
in the searching space, further action is taken to
confine the actual searching space. For the vehicle
state which is outside of the admissible area will
be ruled out from the searching. A simple heuristic
is adopted: the instantaneous position of the train
should not be different significantly from a position
defined by the average speed [11]. Accordingly, we
define the upper bound and lower bound for the
journey time cost at various journey distance.

C. Summary

DP has been applied to search for the optimum
journey trajectories in terms of augmented vehicle
states routes. By dividing the searching procedure
into different sub-intervals, DP is able to obtain the
minimum energy cost for vehicle switching from
its original state to current state by eliminating the
same states with more energy cost. An admissible
area for the DP search has been adopted to reduce
the total searching states. Any states which stand

Searched train trajectory at required journey time of 2200s
T T T

Searched train trajectory at required journey time of 2800s X1t
60 T T T T T T

Speed(m/s)

S TN

Distance(m) w10'

Fig. 6. Optimised journey trajectories using ACO under different
journey time conditions.

outside of the admissible area will be ruled out of
the searching procedure. The concept of admissible
area relies on the heuristic that for a feasible solu-
tion of train trajectory, the instant position of train
can not vary too much from the position defined by
the average speed.

VI. RESULTS AND DISCUSSION

The key simulation results are shown in this
section. Firstly, trajectories for various scheduled
journey time, i.e. 2200 seconds, 2800 seconds, 3400
seconds for ACO, GA and DP are presented in Fig.
6} Fig.[7] and Figl§]

For journeys with considerable journey time mar-
gin, both the ACO and GA algorithms fail to find
a smooth trajectory. There is no extended cruising
phase and often there is a considerable difference
between the maximum and minimum speed in the
central part of the journey. These are clearly not
good solutions. The DP on the other hand performed
better with a more constant cruising speed below the
line speed limit.

Figs. 9] and [I0] show how the objective function
output evolves with the generation for the journey
time of 2800s.

The journey time cost vs. energy cost curves
for different scheduled journey time are compared
between the three algorithms. The journey time cost
range from 2100 seconds to 3500 seconds with an
interval of 100 seconds. These curves are shown
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Fig. 7.
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Fig. 10. The best and mean objective function output for journey
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Fig. 11. Journey energy cost vs. time cost curves using different
algorithms

TABLE 1V

CHARACTERISTIC COMPARISON BETWEEN THREE ALGORITHMS
APPLIED ON THE JOURNEY WITH SCHEDULED TIME OF 2800S FOR

15 RUNS
Algorithms Mean  Deviation Aver.comp.time
value (%) (Unit)
ACO 946.6  16.6 1
GA 885 51.6 2.81
DP 7846 0 4.4

in Fig Note that each mark in the figure
shows a combination of the journey time cost and
energy cost for a simulation. Shape of the mark
distinguishes the type of algorithm.

When the journey time constraint is small, all
three algorithms perform well, however, it was only
possible to reach a solution for 2100 seconds using
the DP algorithm, the others both failed to converge.
At journey times greater than 2800, the performance
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of the GA significantly decreased. More heuristic
information is used in the case of the ACO, and the
algorithms performance remains more stable than
GA. It is demonstrated that an optimum solution is
not guaranteed for heuristic algorithms and the per-
formance of heuristic algorithms can be significantly
affected by searching space.

Dynamic programming on the other hand is able
to obtain the best solution among the three algo-
rithms but it requires significantly more computa-
tional resources. Since any combination of current
used journey time, current used energy and cur-
rent distance implies a unique state in the search-
ing space, the computational complexity becomes
enormous. Such algorithm demonstrates its robust
searching capability even at even lower journey
times, say 2100 seconds. However, the algorithms
based on the random Monte-carlo style selection
have the possibility of never finding a suitable
solution.

Tab. shows a comparison of the characteristic
between the three algorithms.

VII. CONCLUSIONS AND SUMMARY
A. Overview

In this paper, methods for single train trajectory
optimisation are discussed. Choosing the sequence
of control operations is a problem that requires a
non-trivial solution. By approximating train running
trajectory over a relatively short distance, the search
for the sequence can be turned into the procedure of
determining the speed at different preset positions.
A sparse storage model is proposed. Two heuristic
algorithms including ACO and GA are applied
based on this model. DP is also used to search
for the target speed and the simulation results are
demonstrated and discussed.

B. Conclusions

o The solution to the optimum train trajectory
cannot be solved analytically and numerical
methods must be used.

o The performance of 3 methods have been con-
trasted and compared. It was found that DP
performed better than both GA and ACO. Un-
der certain circumstances GA performed quite
poorly and failed to converge onto a good
solution (particularly for large journey times).
It may be possible to tune the search algorithm,

—

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

but without comparative results from alterna-
tive methods it would be impossible to deter-
mine the existence of better solutions. ACO
depended on strong heuristic information and
performed adequately for most of the journey
time allowances. It also arrived at a solution
significantly quicker than the other methods.
For those cases where the solution space be-
comes small, both the GA and ACO failed to
converge on a solution.

In general it is recommended that more than
1 method should be used to identify optimum
trajectories because it is often possible to con-
verge on a solution which is plausible, yet
nowhere near optimal.
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